Literatur

Sie wollen tiefer einsteigen? Aktuelle Literaturempfehlungen zum Thema Forschungsdatenmanagement.

Rechtliche Fragestellungen

  1. Meyermann, A., & Porzelt, M. (2014). Hinweise zur Anonymisierung von qualitativen Daten. Forschungsdaten Bildung Informiert, (1). Retrieved from https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-1.pdf
  2. Ebel, T., & Meyermann, A. (2015). Hinweise zur Anonymisierung von quantitativen Daten. Forschungsdaten Bildung Informiert, (3). Retrieved from https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-3.pdf
  3. Volkmann, S., Feiten, L., Zimmermann, C., Sester, S., Wehle, L., & Becker, B. (2016). Digitale Tarnkappe: Anonymisierung in Videoaufnahmen. In H. C. Mayr & M. Pinzger, H. C. Mayr & M. Pinzger (Eds.), GI-Jahrestagung (Vol. P-259, pp. 413–426). GI. Retrieved from http://dblp.uni-trier.de/db/conf/gi/gi2016.html#VolkmannFZSWB16
  4. Klimpel, P. (2018). Mehr als Materialbewahrung Über die Bedeutung von Rechteinformationen und Lizenzierung in Bibliotheken. In Lizenzangaben und Rechtedokumentationen im Dialog – Datenflüsse nachhaltig gestalten.
  5. Nationalbibliothek, D. (Ed.). (2018). Lizenzangaben und Rechtedokumentationen im Dialog - Datenflüsse nachhaltig gestalten. (D. Nationalbibliothek).
  6. Hannover, L. U., & Informationsbibliothek, T. (2018). FAQs Zu Rechtlichen Aspekten Im Umgang Mit Forschungsdaten. https://doi.org/10.5281/zenodo.1173546
  7. Lauber‐Rönsberg, A., Krahn, P., & Baumann, P. (2018). Gutachten zu den rechtlichen Rahmenbedingungen des Forschungsdatenmanagements. Retrieved from https://tu-dresden.de/gsw/jura/igewem/jfbimd13/ressourcen/dateien/publikationen/DataJus_Zusammenfassung_Gutachten_12-07-18.pdf?lang=de
  8. Stietenroth, D., Nieschulze, J., & Arend, K. (2005). Rechtliche Aspekte und Umsetzung des Datenmanagement in internationalen interdisziplinären Forschungsprojekten. Zeitschrift Für Agrarinformatik, 3, 64–75. Retrieved from http://www.gil.de/publications/zai/archiv/11_3_2005.pdf
  9. Guibault, L., & Wiebe, A. (2013). Safe to be open. Study on the protection of research data and recommendations für access and usage. Universitätsverlag Göttingen.

Forschungssoftware

  1. Erdmann, C., Simons, N., Otsuji, R., Labou, S., Johnson, R., Castelao, G., … Dennis, T. (2019). Top 10 FAIR Data & Software Things. https://doi.org/10.5281/zenodo.2555498
  2. Brown, C., Hong, N. C., & Jackson, M. (2018a). Software Deposit and Preservation Policy and                    Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  3. Brown, C., Hong, N. C., & Jackson, M. (2018b). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  4. Gundersen, O. E., & Kjensmo, S. (2018). State of the Art: Reproducibility in Artificial Intelligence. In S. McIlraith & K. Weinberger, S. McIlraith & K. Weinberger (Eds.), Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18). Association for the Advancement of Artificial Intelligence.
  5. Gärtner, M., Hahn, U., & Hermann, S. (2018a). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck, G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age: 27th International Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings (pp. 284--291). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73706-5_24
  6. Gärtner, M., Hahn, U., & Hermann, S. (2018b). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck, G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age: 27th International Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings (pp. 284--291). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73706-5_24
  7. Hermann, S., Hahn, U., Gärtner, M., & Fritze, F. (2018). Nachträglich ist nicht gleich nachnutzbar: Ansätze für integrierte Prozessdokumentation im Forschungsalltag: 32-45 Seiten / o-bib. Das offene Bibliotheksjournal / herausgegeben vom VDB, Bd. 5 Nr. 3 (2018). https://doi.org/10.5282/O-BIB/2018H3S32-45
  8. Katerbow, M., & Feulner, G. (2018). Handreichung Zum Umgang Mit Forschungssoftware. Zenodo. https://doi.org/10.5281/zenodo.1172970
  9. no author. (15.02.2018). Choose an open source license | Choose a License. Retrieved from https://choosealicense.com/
  10. Atkinson, M., Gesing, S., Montagnat, J., & Taylor, I. (2017). Scientific workflows: Past, present and future. Future Generation Computer Systems, 75, 216–227. https://doi.org/https://doi.org/10.1016/j.future.2017.05.041
  11. da Silva, R. F., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., & Deelman, E. (2017). A characterization of workflow management systems for extreme-scale applications. Future Generation Computer Systems, 75, 228–238. https://doi.org/https://doi.org/10.1016/j.future.2017.02.026
  12. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017a). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. E-Science-Tage 2017: Forschungsdaten Managen. Retrieved from http://archiv.ub.uni-heidelberg.de/volltextserver/22886/
  13. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017b). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. In E-Science-Tage 2017: Forschungsdaten managen. https://doi.org/10.11588/heidok.00022886
  14. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017c). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. In E-Science-Tage 2017: Forschungsdaten managen. https://doi.org/10.11588/heidok.00022886
  15. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017d). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. E-Science-Tage 2017: Forschungsdaten Managen. Retrieved from http://archiv.ub.uni-heidelberg.de/volltextserver/22886/
  16. Hong, N. C. (2017, May). Software sustainability - guidelines for the selfish scientist. https://doi.org/10.6084/m9.figshare.4962950.v1
  17. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., … Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  18. Knoth, C., & Nüst, D. (2017). Reproducibility and Practical Adoption of GEOBIA with Open-Source Software in Docker Containers. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030290
  19. Levin, N., & Leonelli, S. (2017). How Does One “Open” Science? Questions of Value in Biological Research. Science, Technology, & Human Values, 42(2), 280–305. https://doi.org/10.1177/0162243916672071
  20. Nuest, D., Konkol, M., Schutzeichel, M., Pebesma, E., Kray, C., Przibytzin, H., & Lorenz, J. (2017). Opening the Publication Process with Executable Research Compendia. D-Lib Magazine, 23(1/2). https://doi.org/10.1045/january2017-nuest
  21. Scheliga, K. S., Pampel, H., Bernstein, E., Bruch, C., zu Castell, W., Diesmann, M., … Steglich, D. (2017). Helmholtz Open Science Workshop „Zugang zu und Nachnutzung von wissenschaftlicher Software“ #hgfos16 : Report ; November 2016. Potsdam: Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/lis.17.01
  22. Software Source Code IG (Ed.). (2017a). Software Source Code IG. (Software Source Code IG). Retrieved from https://www.rd-alliance.org/groups/software-source-code-ig
  23. Software Source Code IG (Ed.). (2017b). Software Source Code IG. (Software Source Code IG). Retrieved from https://www.rd-alliance.org/groups/software-source-code-ig
  24. Artaza, H., Chue Hong, N., Corpas, M., Corpuz, A., Hooft, R., Jimenez, R., … Vaughan, D. (2016). Top 10 metrics for life science software good practices version 1; referees: 2 approved. F1000Research, 5(2000). https://doi.org/10.12688/f1000research.9206.1
  25. Borgman, C. L., Golshan, M. S., Sands, A. E., Wallis, J. C., Cummings, R. L., Darch, P. T., & Randles, B. M. (2016). Data Management in the Long Tail: Science, Software, and Service. IJDC, 11(1), 128–149. https://doi.org/10.2218/ijdc.v11i1.428
  26. Burgess, L. C., Crotty, D., de Roure, D., Gibbons, J., Goble, C., Missier, P., … O’Beirne, R. (2016). ALAN TURING INSTITUTE SYMPOSIUM ON REPRODUCIBILITY FOR DATA-INTENSIVE RESEARCH--FINAL REPORT.
  27. Druskat, S. (2016). A Proposal for the Measurement and Documentation of Research Software Sustainability in Interactive Metadata Repositories. CoRR. Retrieved from http://arxiv.org/abs/1608.04529
  28. Fehr, J., and Jan Heiland, Himpe, C., & Saak, J. (2016). Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software. AIMS Mathematics, 1(3), 261--281. https://doi.org/10.3934/math.2016.3.261
  29. Hettrick, S. (2016). Research Software Sustainability: Report on a Knowledge Exchange Workshop. Retrieved from http://repository.jisc.ac.uk/6332/1/Research_Software_Sustainability_Report_on_KE_Workshop_Feb_2016_FINAL.pdf
  30. Howison, J., & Bullard, J. (2016). Software in the scientific literature: Problems with seeing, finding, and using software mentioned in the biology literature. Journal of the Association for Information Science and Technology, 67(9), 2137--2155. https://doi.org/10.1002/asi.23538
  31. Katz, D. S., Niemeyer, K. E., Smith, A. M., Anderson, W. L., Boettiger, C., Hinsen, K., … Rios, F. (2016). Software vs. data in the context of citation. PeerJ Preprints, 4, e2630v1. https://doi.org/10.7287/peerj.preprints.2630v1
  32. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/https://doi.org/10.1016/j.commatsci.2015.09.013
  33. Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. PeerJ Computer Science, 2, e86. https://doi.org/https://doi.org/10.7717/peerj-cs.86
  34. Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., … Taufer, M. (2016). Enhancing reproducibility for computational methods. Science, 354(6317), 1240–1241. https://doi.org/10.1126/science.aah6168
  35. Stodden, Victoria, McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., … Taufer, M. (2016). Enhancing reproducibility for computational methods. Science, 354(6317), 1240–1241. https://doi.org/10.1126/science.aah6168
  36. Van den Eynden, V., Knight, G., Vlad, A., Radler, B., Tenopir, C., Leon, D., … Corti, L. (2016). Survey of Wellcome researchers and their attitudes to open research. (figshare, figshare, Ed.). https://doi.org/10.6084/m9.figshare.4055448.v1
  37. Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2016). Good Enough Practices in Scientific Computing. CoRR, abs/1609.00037. Retrieved from http://arxiv.org/abs/1609.00037
  38. Ahalt, S., Carsey, T., Couch, A., Hooper, R., Ibanez, L., Idaszak, R., … Robinson, E. (2015). NSF Workshop on Supporting Scientific Discovery Through Norms and Practices for Software and Data Citation and Attribution. USA: National Science Foundation.
  39. Allen, A., Berriman, G. B., DuPrie, K., Mink, J., Nemiroff, R., Robitaille, T., … Wallin, J. (2015). Improving Software Citation and Credit. Retrieved from http://arxiv.org/abs/1512.07919
  40. Boettiger, C. (2015). An Introduction to Docker for Reproducible Research. SIGOPS Oper. Syst. Rev., 49(1), 71--79. https://doi.org/10.1145/2723872.2723882
  41. McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky, K., … Ludaescher, B. (2015). YesWorkflow: A User-Oriented, Language-Independent Tool for Recovering  Workflow Information from Scripts. Retrieved from http://arxiv.org/abs/1502.02403
  42. Corpas, M., Jimenez, R., Carbon, S. J., García, A., Garcia, L., Goldberg, T., … Hermjakobb, H. (2014). BioJS: an open source standard for biological visualisation – its status in 2014. F1000Research, 3(55). https://doi.org/0.12688/f1000research.3-55.v1
  43. Goodman, A., Pepe, A., Blocker, A. W., Borgman, C. L., Cranmer, K., Crosas, M., … Slavkovic, A. (2014). 10 Simple Rules for the Care and Feeding of Scientific Data. https://doi.org/10.1371/journal.pcbi.1003542
  44. Umweltbundesamt (Ed.). (2014). Dokumentation des Fachgesprächs „Nachhaltige Software“ am 28.11.2014. (Umweltbundesamt). Retrieved from http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/dokumentation_fachgespraech_nachhaltige_software.pdf
  45. Castagné, M. (2013). Institutional repository software comparison: DSpace, EPrints, Digital Commons, Islandora and HydraR. doi: http: / / dx. doi. org /. Retrieved from https://open.library.ubc.ca/cIRcle/collections/graduateresearch/42591/items/1.0075768
  46. Fomel, S., Sava, P., Vlad, I., Liu, Y., & Bashkardin, V. (2013). Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments. Journal of Open Research Software, 1(1). https://doi.org/10.5334/jors.ag
  47. Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., … Emmott, S. (2013). Troubling Trends in Scientific Software Use. Science, 340(6134), 814--815. https://doi.org/10.1126/science.1231535
  48. Pradal, C., Varoquaux, G., & Langtangen, H. P. (2013). Publishing scientific software matters. J. Comput. Science, 4(5), 311–312. https://doi.org/10.1016/j.jocs.2013.08.001
  49. Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1), 7. https://doi.org/10.1186/1751-0473-8-7
  50. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), 1–4. https://doi.org/10.1371/journal.pcbi.1003285
  51. Winn, J. (2013). Research Data Management using CKAN: A Datastore, Data Repository and Data Catalogue. In IASSIST Conference. IASSIST. Retrieved from http://dblp.uni-trier.de/db/conf/iassist/iassist2013.html#Winn13
  52. Pebesma, E., Nüst, D., & Bivand, R. (2012). The R software environment in reproducible geoscientific research. Eos, Transactions American Geophysical Union, 93(16), 163--163. https://doi.org/10.1029/2012EO160003
  53. Spatzier, T., Binz, T., Leyman, F., & Breiter, G. (2012). Portable Cloud Services Using TOSCA. IEEE Internet Computing, 16, 80–85. https://doi.org/doi.ieeecomputersociety.org/10.1109/MIC.2012.43
  54. Hanson, B., Sugden, A., & Alberts, B. (2011). Making Data Maximally Available. Science, 331(6018), 649. https://doi.org/10.1126/science.1203354
  55. Stodden, Victoria. (2010). The Scientific Method in Practice: Reproducibility in the Computational Sciences (No. MIT Sloan Research Paper No. 4773-10). (M. S. R. P. N. 4773-10, M. S. R. P. N. 4773-10, Ed.). https://doi.org/10.2139/ssrn.1550193
  56. Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems, 25(5), 528–540. https://doi.org/https://doi.org/10.1016/j.future.2008.06.012
  57. Roure, D. D., Goble, C., & Stevens, R. (2009). The design and realisation of the Experimentmy Virtual Research Environment for social sharing of workflows. Future Generation Computer Systems, 25(5), 561–567. https://doi.org/https://doi.org/10.1016/j.future.2008.06.010
  58. McCullough, B. D., McGeary, K. A., & Harrison, T. D. (2008). Do Economics Journal Archives Promote Replicable Research? The Canadian Journal of Economics / Revue Canadienne d’Economique, 41(4), 1406–1420. Retrieved from http://www.jstor.org/stable/25478330
  59. Wheeler, D. A. (2007). The Free-Libre / Open Source Software (FLOSS) License Slide.
  60. McGeary, K. A., McCullough, B. D., & Harrison, T. (2006). Lessons from the JMCB archive. Journal of Money Credit and Banking, 38(4), 1093–1107. https://doi.org/10.1353/mcb.2006.0061

Befragungen

  1. Erdmann, C., Simons, N., Otsuji, R., Labou, S., Johnson, R., Castelao, G., … Dennis, T. (2019). Top 10 FAIR Data & Software Things. https://doi.org/10.5281/zenodo.2555498
  2. Fuller, A., Omidiji, Y., Viefhaus, T., Maier, J., & Scheffknecht, G. (2019). The impact of an additive on fly ash formation/transformation from wood dust combustion in a lab-scale pulverized fuel reactor. Renewable Energy, 136, 732–745. https://doi.org/https://doi.org/10.1016/j.renene.2019.01.013
  3. Hallmen, P. P., Rauhut, G., Stoll, H., Mitrushchenkov, A. O., & Van Slageren, J. (2018). Crystal Field Splittings in Lanthanide Complexes: Inclusion of Correlation Effects beyond Second Order Perturbation Theory. J. Chem. Theory Comput., 14(8), 3998–4009. https://doi.org/10.1021/acs.jctc.8b00184
  4. Neubauer, Y., Gredinger, A., Borgmeyer, J., Kleinhappl, M., & Biollaz, S. M. A. (2018). Comparison of two on-line tar-monitoring devices with off-line liquid sample tar-analysis operated on a test gas generation system applying ethene pyrolysis. Biomass and Bioenergy, 117, 63–70. https://doi.org/https://doi.org/10.1016/j.biombioe.2018.07.009
  5. Plaza, P., Maier, J., Maj, I., Gadek, W., & Kalisz, S. (2018). Potassium and chlorine distributions in high temperature halloysite formed deposits. In Tagungsband: 13th International Conference on Boiler Technology. 23.-26. Oktober 2018 , Szczyrk – Orle Gniazdo, Poland.
  6. Samad, A., Vogt, U., & Laquai, B. (2018). Outdoor air quality measurements using low cost particulate matter sensors. Scientific Research Abstracts; Vol. 8; III  International Conference on Atmospheric Dust - Dust 2018, 137.
  7. Schmid, M., Seitz, T., Waizmann, G., Spörl, R., & Scheffknecht, G. (2018). Fluidized bed steam-oxygen gasification of dried sewage sludge: reduction of tar and H2S with limestone as bed additive. In 27th International Conference on the Impact of Fuel Quality on Power Production and the Environment. Lake Louise, Kanada.
  8. Schmid, M., Beirow, M., Schweitzer, D., Waizmann, G., Spörl, R., & Scheffknecht, G. (2018). Product gas composition for steam-oxygen fluidized bed gasification of dried sewage sludge, straw pellets and wood pellets and the influence of limestone as bed material. Biomass and Bioenergy, 117, 71–77. https://doi.org/https://doi.org/10.1016/j.biombioe.2018.07.011
  9. Tahir, M., Tenbohlen, S., & Miyazaki, S. (2018). Optimization of FRA by an Improved Numerical Winding Model: Disk Space Variation.
  10. Youssefi, R., Maier, J., Merli, S., & Scheffknecht, G. (2018). Evaluation of the Ignition and Combustion Behavior of Solid Fuels with the Support of a Plasma Torch. In Tagungsband: Kraftwerkstechnik 2018, Power Plant Technology (pp. 345–356). 23.-24.10.2018, Dresden.
  11. Zhang, P., Perfetti, M., Kern, M., Hallmen, P. P., Ungur, L., Lenz, S., … Van Slageren, J. (2018). Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes. Chem. Sci., 9(5), 1221–1230. https://doi.org/10.1039/c7sc04873d
  12. Ziegler, B., & Rauhut, G. (2018). Rigorous use of symmetry within the construction of multidimensional potential energy surfaces. J. Chem. Phys., 149(16), 164110. https://doi.org/10.1063/1.5047912
  13. Hallmen, P. P., Köppl, C., Rauhut, G., Stoll, H., & Van Slageren, J. (2017). Fast and reliable ab initio calculation of crystal field splittings in lanthanide complexes. J. Chem. Phys., 147(16), 164101. https://doi.org/10.1063/1.4998815
  14. Petrenko, T., & Rauhut, G. (2017a). A General Approach for Calculating Strongly Anharmonic Vibronic Spectra with a High Density of States: The X̃2B₁←X̃1A₁Photoelectron Spectrum of Difluoromethane. J. Chem. Theory Comput., 13(11), 5515–5527. https://doi.org/10.1021/acs.jctc.7b00468
  15. Petrenko, T., & Rauhut, G. (2017b). A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems. J. Chem. Phys., 146(12), 124101. https://doi.org/10.1063/1.4978581
  16. Samad, A., & Vogt, U. (2017). Dreidimensionale Beobachtungen der Luftqualität in Stuttgart im Rahmen des BMBF-Projekts 3DO. In Tagungsband: 36. Sitzung des Arbeitskreises Klima (p. 15). 27.10.2017, Rauischholzhausen.
  17. Baumbach, G., Wejbera, B., Vogt, U., & Fischer, G. (2016). Investigation of particulate matter and mould spores in horse stables. Scientific Research Abstracts; Vol. 5;  II International Conference on Atmospheric Dust – DUST 2016, 166.
  18. Gündemir-Durmaz, T., Schmid, F., El Baz, Y., Häusser, A., Schneider, C., Bilitewski, U., … Laschat, S. (2016). Truncated borrelidin analogues: Synthesis by sequential cross metathesis/olefination for the southern fragment and biological evaluation. Org. Biomol. Chem., 14(35), 8261–8269. https://doi.org/10.1039/c6ob01358a
  19. Liu, Q., Li, H., Wu, Z., Li, D., Beckers, H., Rauhut, G., & Zeng, X. (2016). Photolysis of Carbonyl Diisocyanate: Generation of Isocyanatocarbonyl Nitrene and Diazomethanone. Chem. - An Asian J., 11(20), 2953–2959. https://doi.org/10.1002/asia.201601073
  20. Ostrowski, L., Ziegler, B., & Rauhut, G. (2016). Tensor decomposition in potential energy surface representations. J. Chem. Phys., 145(10), 104103. https://doi.org/10.1063/1.4962368
  21. Vogt, U., Mezger, A., Baumbach, G., & Dreher, W. (2016). Particulate matter source identification and spatial distribution around the high polluted traffic site at Stuttgart Neckartor in southern Germany. Scientific Research Abstracts; Vol. 5;  II International Conference on Atmospheric Dust – DUST 2016, 156.
  22. Vogt, U., & Reuter, U. (2016). Spatial distribution of particulate matter and NO2 along the busy federal highway B14 in the city of Stuttgart – Results of mobile and diffusive sampler measurements. In Tagungsband: 10th International Conference on Air Quality Science and Application (p. 71). 15.03.2016 Mailand, Italien.
  23. Zheng, J., Baumbach, G., Vogt, U., & Scheffknecht, G. (2016). Outdoor and indoor measurements of biomass combustion induced black carbon, CO and PAH in a residential area. In Tagungsband: 10th International Conference on Air Quality Science and Application (p. 121). 15.03.2016 Mailand, Italien.
  24. Ziegler, B., & Rauhut, G. (2016). Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions. J. Chem. Phys., 144(11), 114114. https://doi.org/10.1063/1.4943985
  25. Meier, P., & Rauhut, G. (2015). Comparison of methods for calculating Franck-Condon factors beyond the harmonic approximation: How important are Duschinsky rotations? Mol. Phys., 113(23), 3859–3873. https://doi.org/10.1080/00268976.2015.1074740
  26. Meier, P., Oschetzki, D., Pfeiffer, F., & Rauhut, G. (2015). Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches. J. Chem. Phys., 143(24), 244111. https://doi.org/10.1063/1.4938280
  27. Petrenko, T., & Rauhut, G. (2015). Time-independent eigenstate-free calculation of vibronic spectra beyond the harmonic approximation. J. Chem. Phys., 143(23), 234106. https://doi.org/10.1063/1.4937380
  28. Rauhut, Guntram. (2015). Anharmonic Franck-Condon Factors for the X̃2B₁ ← X̃1A₁ Photoionization of Ketene. J. Phys. Chem. A, 119(41), 10264–10271. https://doi.org/10.1021/acs.jpca.5b06922
  29. Meier, P., Oschetzki, D., Berger, R., & Rauhut, G. (2014). Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations. J. Chem. Phys., 140(18), 184111. https://doi.org/10.1063/1.4874849
  30. Neff, M., & Rauhut, G. (2014). Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 119, 100–106. https://doi.org/10.1016/j.saa.2013.02.033
  31. Perrin, A., Floresantognini, A., Zeng, X., Beckers, H., Willner, H., & Rauhut, G. (2014). Vibrational spectrum and gas-phase structure of disulfur dinitride (S₂N₂). Chem. - A Eur. J., 20(33), 10323–10331. https://doi.org/10.1002/chem.201402404
  32. Pfeiffer, F., & Rauhut, G. (2014). Multi-reference vibration correlation methods. J. Chem. Phys., 140(6), 064110. https://doi.org/10.1063/1.4865098
  33. Dienberg, L., Haug, J., Rauhut, G., & Roduner, E. (2013). Hydrogen storage by physisorption on dodecahydro-closo-dodecaboranes. Phys. Chem. Chem. Phys., 15(16), 5836–5843. https://doi.org/10.1039/c3cp43848a
  34. Meier, P., Bellchambers, G., Klepp, J., Manby, F. R., & Rauhut, G. (2013). Modeling of high-order terms in potential energy surface expansions using the reference-geometry Harris-Foulkes method. Phys. Chem. Chem. Phys., 15(25), 10233–10240. https://doi.org/10.1039/c3cp50172h
  35. Neff, M., Oschetzki, D., Yudin, Y., Dorozhko, Y., Currle-Linde, N., Resch, M., & Rauhut, G. (2013). Efficient Calculation of Multi-dimensional Potential Energy Surfaces of Molecules and Molecular Clusters. In Nagel, WE and Kroner, DH and Resch, MM, Nagel, WE and Kroner, DH and Resch, MM (Ed.), High Perform. Comput. Sci. Eng. ‘13 (pp. 219–230). https://doi.org/10.1007/978-3-319-02165-2_16
  36. Pfeiffer, F., Rauhut, G., Feller, D., & Peterson, K. A. (2013). Anharmonic zero point vibrational energies: Tipping the scales in accurate thermochemistry calculations? J. Chem. Phys., 138(4), 044311. https://doi.org/10.1063/1.4777568
  37. Banert, K., Berndt, C., Hagedorn, M., Liu, H., Anacker, T., Friedrich, J., & Rauhut, G. (2012). Experimental and theoretical studies on the synthesis, spectroscopic data, and reactions of formyl azide. Angew. Chemie - Int. Ed., 51(19), 4718–4721. https://doi.org/10.1002/anie.201200029
  38. Meier, P., Broghammer, F., Latendorf, K., Rauhut, G., & Peters, R. (2012). Cooperative Al(salen)-pyridinium catalysts for the asymmetric synthesis of trans-configured β-lactones by [2+2]-cyclocondensation of acylbromides and aldehydes: Investigation of pyridinium substituent effects. Molecules, 17(6), 7121–7150. https://doi.org/10.3390/molecules17067121
  39. Oschetzki, D., Neff, M., Meier, P., Pfeiffer, F., & Rauhut, G. (2012). Selected Aspects Concerning the Efficient Calculation of Vibrational Spectra beyond the Harmonic Approximation. Croat. Chem. Acta, 85(4), 379–390. https://doi.org/10.5562/cca2149
  40. Botschwina, P., Oswald, R., & Rauhut, G. (2011). Explicitly correlated coupled cluster calculations for the propargyl cation (H₂C₃H+) and related species. Phys. Chem. Chem. Phys., 13(17), 7921–7929. https://doi.org/10.1039/c1cp20206e
  41. Heislbetz, S., Pfeiffer, F., & Rauhut, G. (2011). Configuration selection within vibrational multiconfiguration self-consistent field theory: Application to bridged lithium compounds. J. Chem. Phys., 134(20), 204108. https://doi.org/10.1063/1.3593714
  42. Meier, P., Neff, M., & Rauhut, G. (2011). Accurate vibrational frequencies of borane and its isotopologues. J. Chem. Theory Comput., 7(1), 148–152. https://doi.org/10.1021/ct1004752
  43. Neff, M., Hrenar, T., Oschetzki, D., & Rauhut, G. (2011). Convergence of vibrational angular momentum terms within the Watson Hamiltonian. J. Chem. Phys., 134(6), 064105. https://doi.org/10.1063/1.3551513
  44. Pfeiffer, F., & Rauhut, G. (2011). Anharmonic frequencies of CX₂Y₂(X, Y = O, N, F, H, D) isomers and related systems obtained from vibrational multiconfiguration self-consistent field theory. J. Phys. Chem. A, 115(40), 11050–11056. https://doi.org/10.1021/jp2064062
  45. Rodriguez-Betancourtt, V. M., Quezada-Navarro, V. M., Neff, M., & Rauhut, G. (2011). Anharmonic frequencies of [F, C, N, X] isomers (X = O, S) obtained from explicitly correlated coupled-cluster calculations. Chem. Phys., 387(1–3), 1–4. https://doi.org/10.1016/j.chemphys.2011.06.015
  46. Sielk, J., Von Horsten, H. F., Hartke, B., & Rauhut, G. (2011). Towards automated multi-dimensional quantum dynamical investigations of double-minimum potentials: Principles and example applications. Chem. Phys., 380(1–3), 1–8. https://doi.org/10.1016/j.chemphys.2010.06.018
  47. Theurer, M., El Baz, Y., Koschorreck, K., Urlacher, V. B., Rauhut, G., Baro, A., & Laschat, S. (2011). Chemoenzymatic synthesis of the C3-C11-fragment of borrelidin. European J. Org. Chem., (22), 4241–4249. https://doi.org/10.1002/ejoc.201100412
  48. Heislbetz, S., & Rauhut, G. (2010). Vibrational multiconfiguration self-consistent field theory: Implementation and test calculations. J. Chem. Phys., 132(12), 124102. https://doi.org/10.1063/1.3364861
  49. Knowles, P. J., Rauhut, G., & Stoll, H. (2010). Hans-Joachim Werner. Mol. Phys., 108(3–4), 221–222. https://doi.org/10.1080/00268971003718284
  50. Rajagopalan, S., Asthalter, T., Rabe, V., Laschat, S., Rauhut, G., & Roduner, E. (2010). Vibrational dynamics of a trinuclear oxo-bridged iron complex as studied by nuclear inelastic scattering, Mössbauer spectroscopy and DFT calculations. In Muller, H and Reissner, M and Steiner, W and Wiesinger, G, Muller, H and Reissner, M and Steiner, W and Wiesinger, G (Ed.), J. Phys. Conf. Ser (Vol. 217, p. 012030). https://doi.org/10.1088/1742-6596/217/1/012030
  51. Santra, S., Stoll, H., & Rauhut, G. (2010). Simultaneous adsorption of benzene and dioxygen in CuHY zeolites as a precursor process to the aerobic oxidation of benzene to phenol. Phys. Chem. Chem. Phys., 12(24), 6345–6351. https://doi.org/10.1039/b921531j
  52. Thierfelder, C., Rauhut, G., & Schwerdtfeger, P. (2010). Relativistic coupled-cluster study of the parity-violation energy shift of CHFClBr. Phys. Rev. A - At. Mol. Opt. Phys., 81(3), 032513. https://doi.org/10.1103/PhysRevA.81.032513
  53. Archipov, T., Santra, S., Ene, A. B., Stoll, H., Rauhut, G., & Roduner, E. (2009). Adsorption of benzene to copper in CuHY zeolite. J. Phys. Chem. C, 113(10), 4107–4116. https://doi.org/10.1021/jp805976a
  54. Neff, M., & Rauhut, G. (2009a). Erratum: Toward large scale vibrational configuration interaction calculations (Journal of Chemical Physics (2009) 131 (124129)). J. Chem. Phys., 131(22), 229901. https://doi.org/10.1063/1.3273188
  55. Neff, M., & Rauhut, G. (2009b). Toward large scale vibrational configuration interaction calculations. J. Chem. Phys., 131(12), 124129. https://doi.org/10.1063/1.3243862
  56. Polly, R., Schimmelpfennig, B., Flörsheimer, M., Kruse, K., Abdelmonem, A., Klenze, R., … Fanghänel, T. (2009). Theoretical investigation of the water/corundum (0001) interface. J. Chem. Phys., 130(6), 064702. https://doi.org/10.1063/1.3052074
  57. Rauhut, Guntram, Knizia, G., & Werner, H. J. (2009). Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory. J. Chem. Phys., 130(5), 054105. https://doi.org/10.1063/1.3070236
  58. Rauhut, Guntram, & Hartke, B. (2009). Modeling of high-order many-mode terms in the expansion of multidimensional potential energy surfaces: Application to vibrational spectra. J. Chem. Phys., 131(1), 014108. https://doi.org/10.1063/1.3160668
  59. Santra, S., Archipov, T., Ene, A. B., Komnik, H., Stoll, H., Roduner, E., & Rauhut, G. (2009). Adsorption of dioxygen to copper in CuHY zeolite. Phys. Chem. Chem. Phys., 11(39), 8855–8866. https://doi.org/10.1039/b904152d
  60. Heislbetz, S., Schwerdtfeger, P., & Rauhut, G. (2007). Vibrational spectra obtained from high quality potential energy surfaces spanned by low level normal coordinates: Application to CHFClI and CDFClI. Mol. Phys., 105(10), 1385–1394. https://doi.org/10.1080/00268970701348741
  61. Rauhut, Guntram. (2007). Configuration selection as a route towards efficient vibrational configuration interaction calculations. J. Chem. Phys., 127(18), 184109. https://doi.org/10.1063/1.2790016
  62. Rauhut, Guntram, Barone, V., & Schwerdtfeger, P. (2006). Vibrational analyses for CHFCIBr and CDFCIBr based on high level ab initio calculations. J. Chem. Phys., 125(5), 054308. https://doi.org/10.1063/1.2236112
  63. Von Horsten, H. F., Rauhut, G., & Hartke, B. (2006). Fingerprints of delocalized transition states in quantum dynamics. J. Phys. Chem. A, 110(48), 13014–13021. https://doi.org/10.1021/jp063051c
  64. Figgen, D., Rauhut, G., Dolg, M., & Stoll, H. (2005). Energy-consistent pseudopotentials for group 11 and 12 atoms: Adjustment to multi-configuration Dirac-Hartree-Fock data. Chem. Phys., 311(1-2 SPEC.ISS.), 227–244. https://doi.org/10.1016/j.chemphys.2004.10.005
  65. Hrenar, T., Werner, H. J., & Rauhut, G. (2005). Towards accurate ab initio calculations on the vibrational modes of the alkaline earth metal hydrides. Phys. Chem. Chem. Phys., 7(17), 3123–3125. https://doi.org/10.1039/b508779a
  66. Pflüger, K., Paulus, M., Jagiella, S., Burkert, T., & Rauhut, G. (2005). Multi-level vibrational SCF calculations and FTIR measurements on furazan. Theor. Chem. Acc., 114(4–5), 327–332. https://doi.org/10.1007/s00214-005-0678-4
  67. Schweiger, S., Hartke, B., & Rauhut, G. (2005). Double proton transfer reactions at the transition from a concerted to a stepwise mechanism: A comparative ab initio study. Phys. Chem. Chem. Phys., 7(3), 493–500. https://doi.org/10.1039/b415528a
  68. Kluner, T., & Rauhut, G. (2004). Theoretical chemistry 2003. Nachr. Chem., 52(3), 313–316.
  69. Rauhut, Guntram. (2004). Efficient calculation of potential energy surfaces for the generation of vibrational wave functions. J. Chem. Phys., 121(19), 9313–9322. https://doi.org/10.1063/1.1804174
  70. Schweiger, S., Hartke, B., & Rauhut, G. (2004). Analysis and dynamics of unusual double proton transfer reactions based on the reaction path Hamiltonian. Phys. Chem. Chem. Phys., 6(13), 3341–3349. https://doi.org/10.1039/b402534b
  71. Hübner, G., Rauhut, G., Stoll, H., & Roduner, E. (2003). Ethyne Adsorbed on CuNaY Zeolite:  FTIR Spectra and Quantum Chemical Calculations. J. Phys. Chem. B, 107(33), 8568–8573. https://doi.org/10.1021/jp034304u
  72. Nilsson Lill, S. O., Rauhut, G., & Anders, E. (2003). Chemical reactivity controlled by negative hyperconjugation: A theoretical study. Chem. - A Eur. J., 9(13), 3143–3153. https://doi.org/10.1002/chem.200304878
  73. Rauhut, Guntram. (2003). Modulation of reaction barriers by generating reactive intermediates: Double proton transfer reactions. Phys. Chem. Chem. Phys., 5(5), 791–800. https://doi.org/10.1039/b208960b
  74. Figgen, D., Metz, B., Stoll, H., & Rauhut, G. (2002). Transferable scaling factors for vibrational force fields of halogenated molecules based on energy-consistent pseudopotentials. J. Phys. Chem. A, 106(29), 6810–6816. https://doi.org/10.1021/jp014557s
  75. Gastilovich, E. A., Serov, S. A., Korol’kova, N. V., Klimenko, V. G., & Rauhut, G. (2002). Vibronic-spin-orbit coupling in 1,3,6,8-tetrachlorodibenzo-p-dioxin. Opt. Spectrosc., 92(4), 524–531. https://doi.org/10.1134/1.1473591
  76. Hübner, G., Rauhut, G., Stoll, H., & Roduner, E. (2002). FTIR measurements and quantum chemical calculations of ethylene adsorbed on CuNaY. Phys. Chem. Chem. Phys., 4(13), 3112–3121. https://doi.org/10.1039/b111571e
  77. Magnko, L., Schweizer, M., Rauhut, G., Schütz, M., Stoll, H., & Werner, H. J. (2002). A comparison of metallophilic attraction in (X-M-PH₃)₂(M = Cu, Ag, Au; X = H, Cl). Phys. Chem. Chem. Phys., 4(6), 1006–1013. https://doi.org/10.1039/b110624d
  78. Rauhut, G., & Werner, H. J. (2001). Analytical energy gradients for local coupled-cluster methods. Phys. Chem. Chem. Phys., 3(22), 4853–4862. https://doi.org/10.1039/b105126c
  79. Stevens, J., Schweizer, M., & Rauhut, G. (2001). Toward an understanding of the furoxan-dinitrosoethylene equilibrium. J. Am. Chem. Soc., 123(30), 7326–7333. https://doi.org/10.1021/ja010792c
  80. Rauhut, G, & Eckert, F. (2000). Quantum chemical studies on heterocyclic rearrangements in benzofuroxans: Reaction paths, vibrational spectra, and rate constants. In Krause, E and Jager, W, Krause, E and Jager, W (Ed.), HIGH Perform. Comput. Sci. Eng. `99 (pp. 183–193). High Performance Comp Ctr Stuttgart.
  81. Eckert, F., Rauhut, G., Katritzky, A. R., & Steel, P. J. (1999). A theoretical and experimental study of the molecular rearrangement of 5-methyl-4-nitrobenzofuroxan. J. Am. Chem. Soc., 121(28), 6700–6711. https://doi.org/10.1021/ja990475u
  82. Rauhut, G, & Eckert, F. (1999). Quantum chemical studies on the reactivity of electron-rich heterocycles: Benzofuroxans. Sci. Prog., 82, 209–231.
  83. Rauhut, Guntram, & Eckert, F. (1999). A computational study on the mechanism and kinetics of the pyrolysis of 2-nitrophenyl azide. J. Phys. Chem. A, 103(45), 9086–9092. https://doi.org/10.1021/jp991181y
  84. Rauhut, Guntram, El Azhary, A., Eckert, F., Schumann, U., & Werner, H. J. (1999). Impact of local approximations on MP2 vibrational frequencies. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 55(3), 647–658. https://doi.org/10.1016/S1386-1425(98)00268-6
  85. El Azhary, A., Rauhut, G., Pulay, P., & Werner, H. J. (1998). Analytical energy gradients for local second-order Møller-Plesset perturbation theory. J. Chem. Phys., 108(13), 5185–5193. https://doi.org/10.1063/1.475955
  86. Rauhut, Guntram, Pulay, P., & Werner, H. J. (1998). Integral transformation with low-order scaling for large local second-order Møller-Plesset calculations. J. Comput. Chem., 19(11), 1241–1254. https://doi.org/10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K
  87. Schütz, M., Rauhut, G., & Werner, H.-J. (1998). Local Treatment of Electron Correlation in Molecular Clusters:  Structures and Stabilities of (H₂O)ₙ , n = 2−4. J. Phys. Chem. A, 102(29), 5997–6003. https://doi.org/10.1021/jp981168y
  88. Rauhut, Guntram, Jarzfcki, A. A., & Pulay, P. (1997). Density functional based vibrational study of conformational isomers: molecular rearrangement of benzofuroxan. J. Comput. Chem., 18(4), 489–500. https://doi.org/10.1002/(SICI)1096-987X(199703)18:4<489::AID-JCC4>3.0.CO;2-P
  89. Rauhut, Guntram, Puyear, S., Wolinski, K., & Pulay, P. (1996). Comparison of nmr shieldings calculated from hartree-fock and density functional wave functions using gauge-including atomic orbitals. J. Phys. Chem., 100(15), 6310–6316. https://doi.org/10.1021/jp9529127
  90. Rauhut, Guntram, & Pulay, P. (1996). Considerations regarding the local treatment of Laplace transform MPPT. Chem. Phys. Lett., 248(3–4), 223–227. https://doi.org/10.1016/0009-2614(95)01321-0
  91. Clark, T., Rauhut, G., & Breindl, A. (1995). A Combined Semiempirical MO/Neural Net Technique for Estimating 13C Chemical Shifts. Mol. Model. Annu., 1(1), 22–35. https://doi.org/10.1007/s008940050004
  92. Kozlowski, P. M., Rauhut, G., & Pulay, P. (1995). Potential symmetry breaking, structure and definite vibrational assignment for azulene: Multiconfigurational and density functional results. J. Chem. Phys., 103(13), 5650–5661. https://doi.org/10.1063/1.470547
  93. Rauhut, Guntram, & Pulay, P. (1995a). Identification of Isomers from Calculated Vibrational Spectra. A Density Functional Study of Tetrachlorinated Dibenzodioxins. J. Am. Chem. Soc., 117(14), 4167–4172. https://doi.org/10.1021/ja00119a034
  94. Rauhut, Guntram, Boughton, J. W., & Pulay, P. (1995). Modeling localized electron pair correlation energies. J. Chem. Phys., 103(13), 5662–5673. https://doi.org/10.1063/1.470548
  95. Rauhut, Guntram, & Pulay, P. (1995b). Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem., 99(10), 3093–3100. https://doi.org/10.1021/j100010a019
  96. Beck, B., Rauhut, G., & Clark, T. (1994). The natural atomic orbital point charge model for PM3: Multipole moments and molecular electrostatic potentials. J. Comput. Chem., 15(10), 1064–1073. https://doi.org/10.1002/jcc.540151003
  97. Rauhut, Guntram, & Clark, T. (1994). Molecular orbital studies of electron-transfer reactions. J. Chem. Soc. Faraday Trans., 90(12), 1783–1788. https://doi.org/10.1039/FT9949001783
  98. Rauhut, Guntram, Clark, T., & Steinke, T. (1993). A Numerical Self-Consistent Reaction Field (SCRF) Model for Ground and Excited States in NDDO-Based Methods. J. Am. Chem. Soc., 115(20), 9174–9181. https://doi.org/10.1021/ja00073a036
  99. Rauhut, Guntram, & Clark, T. (1993a). Electron-Transfer Reactions: AM1 and ab Initio Studies on Self-Exchange in p-Diaminobenzene Systems. J. Am. Chem. Soc., 115(20), 9127–9135. https://doi.org/10.1021/ja00073a031
  100. Rauhut, Guntram, & Clark, T. (1993b). Multicenter point charge model for high‐quality molecular electrostatic potentials from AM1 calculations. J. Comput. Chem., 14(5), 503–509. https://doi.org/10.1002/jcc.540140502

Best Practices

  1. Austin, C. C., Bloom, T., Dallmeier-Tiessen, S., Khodiyar, V. K., Murphy, F., Nurnberger, A., … Whyte, A. (2017). Key components of data publishing: using current best practices to develop a reference model for data publishing. International Journal on Digital Libraries, 18(2), 77--92. https://doi.org/10.1007/s00799-016-0178-2
  2. Fehr, J., and Jan Heiland, Himpe, C., & Saak, J. (2016). Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software. AIMS Mathematics, 1(3), 261--281. https://doi.org/10.3934/math.2016.3.261

Beschreibung von Forschungsdaten

  1. Schembera, B., & Iglezakis, D. (forthcominga). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In Metadata and Semantic Research. 12th International Conference, MTSR 2018, Limassol, Cyprus, 23-26 October 2018, Proceedings. Springer.
  2. Schembera, B., & Iglezakis, D. (forthcomingb). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In Metadata and Semantic Research. 12th International Conference, MTSR 2018, Limassol, Cyprus, 23-26 October 2018, Proceedings. Springer.
  3. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  4. Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12(2). https://doi.org/10.2218/ijdc.v12i2.577
  5. Group, D. M. W. (2017). DataCite Metadata Schema for the Publication and Citation of Research Data. Version 4.1. https://doi.org/10.5438/0015
  6. Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton, J., Dey, A., Nag, S., … others. (2017). Ground: A Data Context Service. In CIDR.
  7. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., … Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  8. Schembera, B., & Bönisch, T. (2017). Challenges of Research Data Management for High Performance Computing. In International Conference on Theory and Practice of Digital Libraries (pp. 140--151). Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-67008-9_12
  9. Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino da Silva Santos, L. O., & Dumontier, M. (2017). A design framework and exemplar metrics for FAIRness. BioRxiv. https://doi.org/10.1101/225490
  10. Kohwalter, T., Oliveira, T., Freire, J., Clua, E., & Murta, L. (2016). Prov Viewer: A Graph-Based Visualization Tool for Interactive Exploration of Provenance Data. In M. Mattoso & B. Glavic, M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 71--82). Cham: Springer International Publishing.
  11. Pimentel, J. F., Freire, J., Braganholo, V., & Murta, L. (2016). Tracking and Analyzing the Evolution of Provenance from Scripts. In M. Mattoso & B. Glavic, M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 16--28). Cham: Springer International Publishing.
  12. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/https://doi.org/10.1016/j.commatsci.2015.09.013
  13. Schreiber, A. (2016). Standardisierung eines erweiterbaren Modells für Provenance-Daten (PROV-SPEC), (2016–04).
  14. Wu, K., Coviello, E. N., Flanagan, S. M., Greenwald, M., Lee, X., Romosan, A., … Wright, J. (2016). MPO: A System to Document and Analyze Distributed Heterogeneous Workflows. In M. Mattoso & B. Glavic, M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 166--170). Cham: Springer International Publishing.
  15. Belhajjame, K., Zhao, J., Garijo, D., Gable, M., Hettne, K., Palma, R., … Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the World Wide Web, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  16. Chao, T. (2015). Mapping Methods Metadata for Research Data. International Journal of Digital Curation, 10(1). https://doi.org/10.2218/ijdc.v10i1.347
  17. Moreau, L., Groth, P., Cheney, J., Lebo, T., & Miles, S. (2015). The rationale of PROV. Web Semantics: Science, Services and Agents on the World Wide Web, 35(4), 235–257. https://doi.org/10.1016/j.websem.2015.04.001
  18. Starr, J., Castro, E., Crosas, M., Dumontier, M., Downs, R. R., Duerr, R., … Clark, T. (2015). Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.1
  19. Farnel, S., & Shiri, A. (2014). Metadata for Research Data: Current Practices and Trends. In W. E. Moen & A. Rushing, W. E. Moen & A. Rushing (Eds.), Dublin Core Conference (pp. 74–82). Dublin Core Metadata Initiative. Retrieved from http://dblp.uni-trier.de/db/conf/dc/dc2014.html#FarnelS14
  20. Grunzke, R., Hesser, J., Starek, J., Kepper, N., Gesing, S., Hardt, M., … Jäkel, R. (2014). Device-Driven Metadata Management Solutions for Scientific Big Data Use Cases. In 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (pp. 317–321).
  21. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., … Krüger, J. (2014b). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744--1759. https://doi.org/10.1002/cpe.3116
  22. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., … Krüger, J. (2014a). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744–1759. Retrieved from http://dblp.uni-trier.de/db/journals/concurrency/concurrency26.html#GrunzkeBGHKBGPSSSSSMJNA014
  23. Malik, T. (2014). Geobase: Indexing NetCDF Files for large-scale Data Analysis. In Big Data Management, Technologies, and Applications (pp. 295--313). IGI Global. https://doi.org/10.4018/978-1-4666-4699-5.ch012
  24. Tran, H. D., Holt, J., Goodrich, R. W., Mader, J. A., Swain, M., Laity, A. C., … Berriman, G. B. (2014). Metadata and Data Management for the Keck Observatory Archive. https://doi.org/10.1117/12.2054830
  25. Bechhofer, S., Buchan, I., de Roure, D., Missier, P., Ainsworth, J., Bhagat, J., … Goble, C. (2013). Why linked data is not enough for scientists. Future Generation Computer Systems, 29(2), 599–611. https://doi.org/10.1016/j.future.2011.08.004
  26. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., … Zhao, J. (2013). PROV-O: The PROV Ontology. Retrieved from https://www.w3.org/TR/prov-o/
  27. Sahoo, S., Lebo, T., & McGuinness, D. (2013). PROV-O: The PROV Ontology. W3C.
  28. Lautenschlager, M., Toussaint, F., Thiemann, H., & Reinke, M. (1998). The CERA-2 data model. Retrieved from https://www.pik-potsdam.de/cera/Descriptions/Publications/Papers/9807_DKRZ_TechRep15/cera2.pdf

Anforderungen der Forschungsförderer, politische Entwicklung

  1. für Bildung und Forschung (BMBF), B. (Ed.). (2016). Open Access in Deutschland. (B. für Bildung und Forschung (BMBF)). Retrieved from https://www.bmbf.de/pub/Open_Access_in_Deutschland.pdf

Kontakt

 

FoKUS - Kompetenzzentrum für Forschungsdaten