Literatur

Sie wollen tiefer einsteigen? Aktuelle Literaturempfehlungen zum Thema Forschungsdatenmanagement.

Rechtliche Fragestellungen

  1. Brettschneider, P., Axtmann, A., Böker, E., & von Suchodoletz, D. (2021). Offene Lizenzen für Forschungsdaten - Rechtliche Bewertung und Praxistauglichkeit verbreiteter Lizenzmodelle. O-Bib. Das Offene Bibliotheksjournal, 8(3), 1–22. https://doi.org/10.5282/o-bib/5749
  2. Kleinkopf, F., Jacke, J., & Gärtner, M. (2021). Urheberrechtliche Grenzen der Nachnutzung wissenschaftlicher Korpora bei computergestützten Verfahren und digitalen Ressourcen.
  3. Wirth, T. (2020). Die Pflicht zur Löschung von Forschungsdaten – Urheber- und Datenschutzrecht im Widerspruch zu den Erfordernissen guter wissenschaftlicher Praxis? Zeitschrift für Urheber- und Medienrecht (ZUM), 64(8/9), 585–592. https://www.zew.de/publikationen/die-pflicht-zur-loeschung-von-forschungsdaten-urheber-und-datenschutzrecht-im-widerspruch-zu-den-erfordernissen-guter-wissenschaftlicher-praxis
  4. Kubis, M., Naczinsky, M., Selzer, A., Sperlich, T., Steiner, S., & Waldmann, U. (2019). Der digitale nachlass - Eine Untersuchung aus rechtlicher und technischer Sicht (F.-I. für Sichere Informationstechnologie, U. Bremen/IGMR, & U. Regensburg, Hrsg.). https://doi.org/10.24406/sit-n-572149
  5. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53(10–11), Article 10–11. https://doi.org/10.1515/bd-2019-0098
  6. Kreutzer, T., & Lahmann, H. (2019). Rechtsfragen bei Open Science. Hamburg University Press. https://doi.org/10.15460/HUP.195
  7. Johannes, P. C., Potthoff, J., Roßnagel, A., Neumair, B., Madiesh, M., & Hackel, S. (2013). Beweissicheres elektronisches Laborbuch (Nomos, Hrsg.).
  8. Meyermann, A., & Porzelt, M. (2014). Hinweise zur Anonymisierung von qualitativen Daten. forschungsdaten bildung informiert, 1, Article 1. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-1.pdf
  9. Ebel, T., & Meyermann, A. (2015). Hinweise zur Anonymisierung von quantitativen Daten. forschungsdaten bildung informiert, 3, Article 3. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-3.pdf
  10. Volkmann, S., Feiten, L., Zimmermann, C., Sester, S., Wehle, L., & Becker, B. (2016). Digitale Tarnkappe: Anonymisierung in Videoaufnahmen. In H. C. Mayr & M. Pinzger (Hrsg.), GI-Jahrestagung: Bd. P-259 (S. 413–426). GI. http://dblp.uni-trier.de/db/conf/gi/gi2016.html#VolkmannFZSWB16
  11. Klimpel, P. (2018). Mehr als Materialbewahrung Über die Bedeutung von Rechteinformationen und Lizenzierung in Bibliotheken. Lizenzangaben und Rechtedokumentationen im Dialog – Datenflüsse nachhaltig gestalten.
  12. Nationalbibliothek, D. (Hrsg.). (2018). Lizenzangaben und Rechtedokumentationen im Dialog - Datenflüsse nachhaltig gestalten.
  13. Hannover, L. U., & Informationsbibliothek, T. (2018). FAQs Zu Rechtlichen Aspekten Im Umgang Mit Forschungsdaten. https://doi.org/10.5281/zenodo.1173546
  14. Lauber‐Rönsberg, A., Krahn, P., & Baumann, P. (2018). Gutachten zu den rechtlichen Rahmenbedingungen des Forschungsdatenmanagements. https://tu-dresden.de/gsw/jura/igewem/jfbimd13/ressourcen/dateien/publikationen/DataJus_Zusammenfassung_Gutachten_12-07-18.pdf?lang=de
  15. Stietenroth, D., Nieschulze, J., & Arend, K. (2005). Rechtliche Aspekte und Umsetzung des Datenmanagement in internationalen interdisziplinären Forschungsprojekten. Zeitschrift Für Agrarinformatik, 3, 64–75. http://www.gil.de/publications/zai/archiv/11_3_2005.pdf
  16. Guibault, L., & Wiebe, A. (2013). Safe to be open. Study on the protection of research data and recommendations für access and usage. Universitätsverlag Göttingen.

Forschungssoftware

  1. Hirsch, M., Iglezakis, D., Leymann, F., & Zimmermann, M. (2022). The ReSUS Project - Infrastructure for Sharing Research Software. In E-Science-Tage 2021: Share Your Research Data (S. 267–276). heiBOOKS. https://doi.org/10.11588/HEIBOOKS.979.C13737
  2. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  3. Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., & Carver, J. C. (2021). Software engineering practices for scientific software development: A systematic mapping study. Journal of Systems and Software, 172, 110848. https://doi.org/10.1016/j.jss.2020.110848
  4. Katz, D. S., Gruenpeter, M., & Honeyman, T. (2021). Taking a fresh look at FAIR for research software. Patterns, 2(3), Article 3. https://doi.org/10.1016/j.patter.2021.100222
  5. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2021). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423--443. https://doi.org/10.1016/j.camwa.2020.02.012
  6. van Aalst, M., Ebenhoeh, O., & Matuszynska, A. (2021). Constructing and analysing dynamic models with modelbase v1.2.3: a    software update. BMC BIOINFORMATICS, 22(1), Article 1. https://doi.org/10.1186/s12859-021-04122-7
  7. Alliez, P., Cosmo, R. D., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N. (2020). Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria. Computing in Science  Engineering, 22(1), 39–52. https://doi.org/10.1109/MCSE.2019.2949413
  8. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  9. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  10. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  11. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). Open Source Research Software. Computer, 53(8), 84–88. https://doi.org/10.1109/MC.2020.2998235
  12. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1, 28–38. https://doi.org/10.17192/BFDM.2020.1.8085
  13. Magaña, P., Del-Rosal-Salido, J., Cobos, M., Lira-Loarca, A., & Ortega-Sánchez, M. (2020). Approaching Software Engineering for Marine Sciences: A Single Development Process for Multiple End-User Applications. Journal of Marine Science and Engineering, 8(5), 350. https://doi.org/10.3390/jmse8050350
  14. Pianosi, F., Sarrazin, F., & Wagener, T. (2020). How successfully is open-source research software adopted? Results and implications of surveying the users of a sensitivity analysis toolbox. Environmental Modelling & Software, 124, 104579. https://doi.org/10.1016/j.envsoft.2019.104579
  15. Ruiz-Rube, I., Person, T., Dodero, J. M., Mota, J. M., & Sánchez-Jara, J. M. (2020). Applying static code analysis for domain-specific languages. Software and Systems Modeling, 19(1), 95--110. https://doi.org/10.1007/s10270-019-00729-w
  16. SIRS, E. E. B. W. G. (WG) A. T. F. (TF). (2020). Scholarly infrastructures for research software (E. Commission, Hrsg.). European Commission. https://op.europa.eu/s/oMEw
  17. Trisovic, A., Durbin, P., Schlatter, T., Durand, G., Barbosa, S., Brooke, D., & Crosas, M. (2020). Advancing computational reproducibility in the Dataverse data repository  platform. http://arxiv.org/abs/2005.02985
  18. Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., Martinez-Ortiz, C., der Velden, Y. T., & van Werkhoven, B. (2019). Raising the Profile of Research Software: Recommendations for Funding Agencies and Research Institutions (NWO, Hrsg.).
  19. Ballhausen, M. (2019). Free and Open Source Software Licenses Explained. IEEE Computer, 52(6), 82–86. http://dblp.uni-trier.de/db/journals/computer/computer52.html#Ballhausen19
  20. Druskat, S., Spaaks, J. H., Chue Hong, N., Haines, R., & Baker, J. (2019). Citation File Format (CFF) - Specifications. Zenodo. https://doi.org/10.5281/zenodo.3515946
  21. Erdmann, C., Simons, N., Otsuji, R., Labou, S., Johnson, R., Castelao, G., Boas, B. V., Lamprecht, A.-L., Ortiz, C. M., Garcia, L., Kuzak, M., Martinez, P. A., Stokes, L., Honeyman, T., Wise, S., Quan, J., Peterson, S., Neeser, A., Karvovskaya, L., … Dennis, T. (2019). Top 10 FAIR Data & Software Things. https://doi.org/10.5281/zenodo.2555498
  22. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2019). Sustainable Research Software Hand-Over. CoRR, abs/1909.09469. http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-09469
  23. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2019). Sustainable Research Software Hand-Over. CoRR, abs/1909.09469. http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-09469
  24. Gomez-Diaz, T., & Recio, T. (2019). On the evaluation of research software: the CDUR procedure. F1000Research, 8, 1353. https://doi.org/10.12688/f1000research.19994.2
  25. Gärtner, M. (2019). RePlay-DH Client v1.3.0. https://doi.org/10.18419/darus-475
  26. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2019). FAIR and Open Computer Science Research Software. In arXiv preprint arXiv:1908.05986. http://dblp.uni-trier.de/db/journals/corr/corr1908.html#abs-1908-05986
  27. Hermann, S., Iglezakis, D., & Seeland, A. (2019). Requirements for Finding Research Data and Software. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900480
  28. Hermann, S., Iglezakis, D., & Seeland, A. (2019). Requirements for Finding Research Data and Software. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900480
  29. Hsu, L., Hutchison, V. B., & Langseth, M. L. (2019). Measuring sustainability of seed-funded earth science informatics projects. PLOS ONE, 14(10), 1–25. https://doi.org/10.1371/journal.pone.0222807
  30. Johanson, A. N., & Hasselbring, W. (2019). Software Engineering for Computational Science. In S. Becker, I. Bogicevic, G. Herzwurm, & S. Wagner (Hrsg.), SE/SWM: Bd. P-292 (S. 43–44). GI. http://dblp.uni-trier.de/db/conf/se/se2019.html#JohansonH19
  31. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1--23. https://doi.org/10.3233/ds-190026
  32. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1--23. https://doi.org/10.3233/ds-190026
  33. Li, K., Chen, P.-Y., & Yan, E. (2019). Challenges of measuring software impact through citations: An examination of the lme4 R package. Journal of Informetrics, 13(1), 449--461. https://doi.org/10.1016/j.joi.2019.02.007
  34. Scheliga, K., Pampel, H., Konrad, U., Fritzsch, B., Schlauch, T., Nolden, M., Zu Castell, W., Finke, A., Hammitzsch, M., Bertuch, O., & Denker, M. (2019). Dealing with research software: Recommendations for best practices. https://doi.org/10.2312/OS.HELMHOLTZ.003
  35. Siepel, A. (2019). Challenges in funding and developing genomic software: roots and remedies. Genome Biology, 20(1), 147--. https://doi.org/10.1186/s13059-019-1763-7
  36. Task Group Forschungssoftware Des Arbeitskreises Open Science Der Helmholtz-Gemeinschaft. (2019). Muster-Richtlinie Nachhaltige Forschungssoftware an den Helmholtz-Zentren. https://doi.org/10.2312/OS.HELMHOLTZ.007
  37. van de Sandt, S., Nielsen, L. H., Ioannidis, A., Muench, A., Henneken, E. A., Accomazzi, A., Bigarella, C., Lopez, J. B. G., & Dallmeier-Tiessen, S. (2019). Practice meets Principle: Tracking Software and Data Citations to Zenodo DOIs. CoRR, abs/1911.00295. http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-00295
  38. VSNU, NFU, KNAW, NWO and ZonMw (Hrsg.). (2019). Room for everyone’s talent.
  39. AlNoamany, Y., & Borghi, J. A. (2018). Towards computational reproducibility: researcher perspectives on the use and sharing of software. PeerJ Computer Science, 4, e163. https://doi.org/10.7717/peerj-cs.163
  40. Cruz, M. J., Kurapati, S., & Turkyilmaz-van der Velden, Y. (2018). The Role of Data Stewardship in Software Sustainability and Reproducibility. 2018 IEEE 14th International Conference on e-Science (e-Science), 1–8. https://doi.org/10.1109/eScience.2018.00009
  41. Gärtner, M., Hahn, U., & Hermann, S. (2018). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Hrsg.), Language Technologies for the Challenges of the Digital Age (S. 284–291). Springer International Publishing.
  42. Gärtner, M., Hahn, U., & Hermann, S. (2018). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Hrsg.), Language Technologies for the Challenges of the Digital Age (S. 284–291). Springer International Publishing.
  43. Hallé, S., Khoury, R., & Awesso, M. (2018). Streamlining the Inclusion of Computer Experiments In a Research Paper. IEEE Computer, 51(11), 78–89. http://dblp.uni-trier.de/db/journals/computer/computer51.html#HalleKA18
  44. Hinsen, K. (2018). Verifiability in computer-aided research: the role of digital scientific notations at the human-computer interface. PeerJ Computer Science, 4, e158. https://doi.org/10.7717/peerj-cs.158
  45. Johanson, A., & Hasselbring, W. (2018). Software Engineering for Computational Science: Past, Present, Future. Computing in Science  Engineering, 20(2), 90–109. https://doi.org/10.1109/MCSE.2018.021651343
  46. Karimzadeh, M., & Hoffman, M. M. (2018). Top considerations for creating bioinformatics software documentation. BRIEFINGS IN BIOINFORMATICS, 19(4), 693–699. https://doi.org/10.1093/bib/bbw134
  47. Katerbow, M., & Feulner, G. (2018). Handreichung zum Umgang mit Forschungssoftware. Zenodo. https://doi.org/10.5281/ZENODO.1172970
  48. Katz, D. S., & Hong, N. P. C. (2018). Software Citation in Theory and Practice. In J. H. Davenport, M. Kauers, G. Labahn, & J. Urban (Hrsg.), ICMS (Bd. 10931, S. 289–296). Springer. http://dblp.uni-trier.de/db/conf/icms/icms2018.html#KatzH18
  49. Kuzak, M., Harrow, J., Jimenez, R. C., Martinez, P. A., Psomopoulos, F. E., Svobodová Vařeková, R., & Via, A. (2018). Lesson Development for Open Source Software Best Practices Adoption. 2018 IEEE 14th International Conference on e-Science (e-Science), 19–20. https://doi.org/10.1109/eScience.2018.00011
  50. Lee, B. D. (2018). Ten simple rules for documenting scientific software. PLOS Computational Biology, 14(12), e1006561. https://doi.org/10.1371/journal.pcbi.1006561
  51. Russell, P. H., Johnson, R. L., Ananthan, S., Harnke, B., & Carlson, N. E. (2018). A large-scale analysis of bioinformatics code on GitHub. PLOS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205898
  52. Rüde, U., Willcox, K., McInnes, L. C., & Sterck, H. D. (2018). Research and Education in Computational Science and Engineering. SIAM Review, 60(3), 707–754. http://dblp.uni-trier.de/db/journals/siamrev/siamrev60.html#RudeWMS18
  53. Schlauch, T., Meinel, M., & Haupt, C. (2018). DLR Software Engineering Guidelines. https://doi.org/10.5281/zenodo.1344612
  54. Allen, A., Aragon, C. R., Becker, C., Carver, J., Chis, A., Combemale, B., Croucher, M., Crowston, K., Garijo, D., Gehani, A., Goble, C. A., Haines, R., Hirschfeld, R., Howison, J., Huff, K. D., Jay, C., Katz, D. S., Kirchner, C., Kuksenok, K., … Vinju, J. J. (2017). Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). Dagstuhl Manifestos, 6(1), 1–20. http://dblp.uni-trier.de/db/journals/dagstuhl-manifestos/dagstuhl-manifestos6.html#AllenABCCCCCGGG17
  55. Bar-Sinai, M., & Dunlap, M. (2017). The Open Monolith - Keeping Your Codebase (and Your Headaches) Small (JavaOne, Hrsg.).
  56. Boettiger, C. (2017). Generating CodeMeta Metadata for R Packages. The Journal of Open Source Software, 2(19), 454. https://doi.org/10.21105/joss.00454
  57. Childers, B. R., & Chrysanthis, P. K. (2017). Artifact Evaluation: Is It a Real Incentive? 2017 IEEE 13th International Conference on e-Science (e-Science), 488–489. https://doi.org/10.1109/eScience.2017.79
  58. Cosmo, R. D., & Zacchiroli, S. (2017). Software Heritage: Why and How to Preserve Software Source Code. iPRES 2017 - 14th International Conference on Digital Preservation, 1–10. https://hal.archives-ouvertes.fr/hal-01590958/
  59. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. In E-Science-Tage 2017: Forschungsdaten managen. http://archiv.ub.uni-heidelberg.de/volltextserver/22886/
  60. Henderson, F. (2017). Software Engineering at Google. CoRR, abs/1702.01715. http://arxiv.org/abs/1702.01715
  61. Hinsen, K. (2017). The Roles of Code in Computational Science. Computing in Science  Engineering, 19(1), 78–82. https://doi.org/10.1109/MCSE.2017.18
  62. Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., Capella-Gutierrez, S., Hong, N. C., Cook, M., Corpas, M., Flannery, M., Garcia, L., Gelp\’ı, J. Ll., Gladman, S., Goble, C., Ferreiro, M. G., Gonzalez-Beltran, A., Griffin, P. C., Grüning, B., … Crouch, S. (2017). Four simple recommendations to encourage best practices in research software. F1000Research, 6, 876. https://doi.org/10.12688/f1000research.11407.1
  63. Karimzadeh, M., & Hoffman, M. M. (2017). Top considerations for creating bioinformatics software documentation. Briefings in Bioinformatics, 19(4), 693–699. https://doi.org/10.1093/bib/bbw134
  64. Taschuk, M., & Wilson, G. (2017). Ten simple rules for making research software more robust. PLOS Computational Biology, 13(4), 1–10. https://doi.org/10.1371/journal.pcbi.1005412
  65. Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough practices in scientific computing. PLOS Computational Biology, 13(6), 1–20. https://doi.org/10.1371/journal.pcbi.1005510
  66. zu und Nachnutzung von wissenschaftlicher Software“, T. G. „Zugang. (2017). Empfehlungen zur Implementierung von Leit- und Richtlinien zum Umgang mit wissenschaftlicher Software an den Helmholtz-Zentren (A. O. S. der Helmholtz-Gemeinschaft, Hrsg.). Helmholtz Gemeinschaft. https://os.helmholtz.de/open-science-in-der-helmholtz-gemeinschaft/akteure-und-ihre-rollen/arbeitskreis-open-science/empfehlungen-zur-implementierung-von-leit-und-richtlinien-zum-umgang-mit-wissenschaftlicher-software-an-den-helmholtz-zentren/
  67. Boisvert, R. F. (2016). Incentivizing reproducibility. Communications of the ACM, 59(10), 5--5. https://doi.org/10.1145/2994031
  68. Collberg, C., & Proebsting, T. A. (2016). Repeatability in Computer Systems Research. Commun. ACM, 59(3), 62--69. https://doi.org/10.1145/2812803
  69. Febrero, F., Calero, C., & Moraga, M. Á. (2016). Software reliability modeling based on ISO/IEC SQuaRE. Information and Software Technology, 70, 18--29. https://doi.org/10.1016/j.infsof.2015.09.006
  70. Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., Karlstrom, L., Lee, H., Mills, H. J., Oh, J.-H., Pierce, S. A., Pope, A., Tzeng, M. W., Villamizar, S. R., & Yu, X. (2016). Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance. Earth and Space Science, 3(10), 388--415. https://doi.org/10.1002/2015ea000136
  71. Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. PeerJ Computer Science, 2, e86. https://doi.org/10.7717/peerj-cs.86
  72. Yu, X., Duffy, C. J., Rousseau, A. N., Bhatt, G., Alvarez, A. P., & Charron, D. (2016). Open science in practice: Learning integrated modeling of coupled    surface-subsurface flow processes from scratch. EARTH AND SPACE SCIENCE, 3(5), 190–206. https://doi.org/10.1002/2015EA000155
  73. McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández, C. X., Schwantes, C. R., Wang, L.-P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A Modern Open Library for the Analysis of    Molecular Dynamics Trajectories. Biophysical Journal, 109(8), 1528-- 1532. https://doi.org/10.1016/j.bpj.2015.08.015
  74. Hastings, J., Haug, K., & Steinbeck, C. (2014). Ten recommendations for software engineering in research. GIGASCIENCE, 3. https://doi.org/10.1186/2047-217X-3-31
  75. Hong, N. C. (2014). Minimal information for reusable scientific software. Proceedings of the 2nd Workshop on Working towards Sustainable Scientific Software: Practice and Experience.
  76. Peer, L., Green, A., & Stephenson, E. (2014). Committing to Data Quality Review. International Journal of Digital Curation, 9(1), 263--291. https://doi.org/10.2218/ijdc.v9i1.317
  77. Stodden, V., & Miguez, S. (2014). Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research. Journal of Open Research Software, 2(1), Article 1. https://doi.org/10.5334/jors.ay
  78. Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P. (2014). Best practices for scientific computing. PLoS Biol, 12(1), Article 1. https://doi.org/10.1371/journal.pbio.1001745
  79. Bangerth, W., & Heister, T. (2013). What makes computational open source software libraries successful? Computational Science & Discovery, 6(1), 015010. https://doi.org/10.1088/1749-4699/6/1/015010
  80. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), 1–4. https://doi.org/10.1371/journal.pcbi.1003285
  81. Tomas, P., Escalona, M. J., & Mejias, M. (2013). Open source tools for measuring the Internal Quality of Java software products. A survey. Computer Standards & Interfaces, 36(1), 244--255. https://doi.org/10.1016/j.csi.2013.08.006
  82. Turk, M. J. (2013). How to Scale a Code in the Human Dimension. CoRR, abs/1301.7064. http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-7064
  83. Howison, J., & Herbsleb, J. D. (2011). Scientific software production. Proceedings of the ACM 2011 conference on Computer supported cooperative work - CSCW \textquotesingle11. https://doi.org/10.1145/1958824.1958904
  84. Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J., Beard, S., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., Raman, A., Liu, F., & Walker, D. (2011). A survey of the practice of computational science. State of the Practice Reports on - SC \textquotesingle11. https://doi.org/10.1145/2063348.2063374
  85. Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson, G. (2009). How do scientists develop and use scientific software? 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering, 1–8. https://doi.org/10.1109/SECSE.2009.5069155
  86. Ackroyd, K. S., Kinder, S. H., Mant, G. R., Miller, M. C., Ramsdale, C. A., & Stephenson, P. C. (2008). Scientific Software Development at a Research Facility. IEEE Software, 25(4), 44–51. https://doi.org/10.1109/MS.2008.93
  87. Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L., Hollingsworth, J. K., Shull, F., & Zelkowitz, M. V. (2008). Understanding the High-Performance-Computing Community: A Software Engineer’s Perspective. IEEE Software, 25(4), 29–36. https://doi.org/10.1109/MS.2008.103
  88. Glass, R. L. (2008). Two Mistakes and Error-Free Software: A Confession. IEEE Software, 25(4), 96–96. https://doi.org/10.1109/MS.2008.102
  89. Hall, T., Sharp, H., Beecham, S., Baddoo, N., & Robinson, H. (2008). What Do We Know about Developer Motivation? IEEE Software, 25(4), 92–94. https://doi.org/10.1109/MS.2008.105
  90. Hatton, L. (2008). Testing the Value of Checklists in Code Inspections. IEEE Software, 25(4), 82–88. https://doi.org/10.1109/MS.2008.100
  91. Kendall, R., Carver, J. C., Fisher, D., Henderson, D., Mark, A., Post, D., Rhoades, C. E., & Squires, S. (2008). Development of a Weather Forecasting Code: A Case Study. IEEE Software, 25(4), 59–65. https://doi.org/10.1109/MS.2008.86
  92. Sanders, R., & Kelly, D. (2008). Dealing with Risk in Scientific Software Development. IEEE Software, 25(4), 21–28. https://doi.org/10.1109/MS.2008.84
  93. Sangwan, R. S., Vercellone-Smith, P., & Laplante, P. A. (2008). Structural Epochs in the Complexity of Software over Time. IEEE Software, 25(4), 66–73. https://doi.org/10.1109/MS.2008.96
  94. Segal, J., & Morris, C. (2008). Developing Scientific Software. IEEE Software, 25(4), 18–20. https://doi.org/10.1109/MS.2008.85
  95. Spinellis, D. (2008). The Way We Program. IEEE Software, 25(4), 89–91. https://doi.org/10.1109/MS.2008.101
  96. Vigder, M., Vinson, N. G., Singer, J., Stewart, D., & Mews, K. (2008). Supporting Scientists’ Everyday Work: Automating Scientific Workflows. IEEE Software, 25(4), 52–58. https://doi.org/10.1109/MS.2008.97
  97. Woollard, D., Medvidovic, N., Gil, Y., & Mattmann, C. (2008). Scientific Software as Workflows: From Discovery to Distribution. IEEE Software, 25(4), 37–43. https://doi.org/10.1109/MS.2008.92
  98. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., & others. (2006). The landscape of parallel computing research: A view from berkeley.
  99. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., & others. (2006). The landscape of parallel computing research: A view from berkeley.
  100. Crowder, H. P., Dembo, R. S., & Mulvey, J. M. (1979). On Reporting Computational Experiments with Mathematical Software. ACM Trans. Math. Softw., 5(2), 193–203. http://dblp.uni-trier.de/db/journals/toms/toms5.html#CrowderDM79

Befragungen

  1. Betka, M., & Wagner, S. (2022). Towards practical application of mutation testing in industry -- Traditional versus extreme mutation testing. Journal of Software: Evolution and Process. https://doi.org/10.1002/smr.2450
  2. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarin Sauer, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2022). Computational co-design framework for coreless wound fibre–polymer composite structures. Journal of Computational Design and Engineering, 9(2), 310–329. https://doi.org/10.1093/jcde/qwab081
  3. Hellhake, D., Bogner, J., Schmid, T., & Wagner, S. (2022). Towards using coupling measures to guide black-box integration testing in component-based systems. Software Test, Verification & Reliability, 32(4), Article 4. https://doi.org/10.1002/stvr.1811
  4. Hellwig, C. T., Delgado, M. E., Skoko, J., Dyck, L., Hanna, C., Wentges, A., Langlais, C., Hagenlocher, C., Mack, A., Dinsdale, D., Cain, K., MacFarlane, M., & Rehm, M. (2022). Proteasome inhibition triggers the formation of TRAIL receptor 2 platforms for caspase-8 activation that accumulate in the cytosol. Cell Death and Differentiation, 29, 147–155. https://doi.org/10.1038/s41418-021-00843-7
  5. Hermann, S., & Fehr, J. (2022). Documenting research software in engineering science. Scientific Reports, 12(1), 6567. https://doi.org/10.1038/s41598-022-10376-9
  6. Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. arXiv. /brokenurl# https://doi.org/10.48550/arXiv.2205.05366
  7. Holland, J., Rudolf, W., Marc, S., & Graf, T. (2022). Influence of Pulse Duration on X-ray Emission during Industrial Ultrafast Laser Processing. Materials, 15(6), Article 6. https://doi.org/10.3390/ma15062257
  8. Marner, K., Wagner, S., & Ruhe, G. (2022). Stakeholder identification for a structured release planning approach in the automotive domain. Requirements Engineering. https://doi.org/10.1007/s00766-021-00369-x
  9. Mart\’ınez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A., Vollmer, A. M., & Wagner, S. (2022). Software Engineering for AI-Based Systems: A Survey. ACM Trans. Softw. Eng. Methodol., 31(2), Article 2. https://doi.org/10.1145/3487043
  10. Nikolaev, D., & Padó, S. (2022). Word order typology in Multilingual BERT: A case study in subordinate clause detection. In Proceedings of the ACL SIGTYP workshop.
  11. Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity–Permeability Relationships. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01782-8
  12. Weishaupt, K., Koch, T., & Helmig, R. (2022). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 40(4), 697–718. https://doi.org/10.1080/07373937.2021.1955706
  13. Yang, Q., Zhao, J., Dreyer, F., Krüger, D., & Anders, J. (2022). A CMOS-based NMR platform with arbitrary phase control and temperature compensation. Magnetic Resonance, 3(1), 77–90. https://doi.org/10.5194/mr-3-77-2022
  14. Abella, J., Alcaide, S., Anders, J., Bas, F., Becker, S., De Mulder, E., Elhamawy, N., Gürkaynak, F. K., Handschuh, H., Hernandez, C., Hutter, M., Kosmidis, L., Polian, I., Sauer, M., Wagner, S., & Regazzoni, F. (2021). Security, Reliability and Test Aspects of the RISC-V Ecosystem. 2021 IEEE European Test Symposium (ETS), 1–10. https://doi.org/10.1109/ETS50041.2021.9465449
  15. Amrouch, H., Hu, X. S., Imani, M., Laguna, A. F., Niemier, M., Thomann, S., Yin, X., & Zhuo, C. (2021). Cross-layer Design for Computing-in-Memory : From Devices, Circuits, to Architectures and Applications. ASPDAC ’21 : Proceedings of the 26th Asia and South Pacific Design Automation Conference, 132–139. https://doi.org/10.1145/3394885.3431617
  16. Amrouch, H., Chowdhury, A. B., Jin, W., Karri, R., Khorrami, F., Krishnamurthy, P., Polian, I., Santen, V. M. van, Tan, B., & Tan, S. X.-D. (2021). Special Session : Machine Learning for Semiconductor Test and Reliability. In A. Basio & K. Basu (Hrsg.), 2021 IEEE 39th VLSI Test Symposium (VTS). IEEE. https://doi.org/10.1109/VTS50974.2021.9441052
  17. Asheichyk, K., Fuchs, M., & Krüger, M. (2021). Brownian systems perturbed by mild shear : comparing response relations. Journal of Physics. Condensed Matter, 33(40), 405101. https://doi.org/10.1088/1361-648X/ac0c3c
  18. Avrutin, V., & Jeffrey, M. R. (2021). Bifurcations of hidden orbits in discontinuous maps. Nonlinearity, 34(9), 6140–6172. https://doi.org/10.1088/1361-6544/ac12ac
  19. Bajpai, G., Gupta, A., Prakash, O., Chauhan, Y. S., & Amrouch, H. (2021). Soft Errors in Negative Capacitance FDSOI SRAMs. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China. https://doi.org/10.1109/EDTM50988.2021.9421043
  20. Bauer, T. L., Collmar, K., Kaltofen, T., Loeffler, A.-K., Decker, L., Mueller, J., Pinter, S., Eisler, S. A., Mahner, S., Fraungruber, P., Kommoss, S., Staebler, A., Francis, L., Conlan, R. S., Zuber, J., Jeschke, U., Trillsch, F., & Rathert, P. (2021). Functional Analysis of Non-Genetic Resistance to Platinum in Epithelial Ovarian Cancer Reveals a Role for the MBD3-NuRD Complex in Resistance Development. Cancers, 13(15), 3801. https://doi.org/10.3390/cancers13153801
  21. Baumann, A., Oezkaya, E., Schnabel, D., Biermann, D., & Eberhard, P. (2021). Cutting-fluid flow with chip evacuation during deep-hole drilling with twist drills. European Journal of Mechanics. B, Fluids, 89(September-October), 473–484. https://doi.org/10.1016/j.euromechflu.2021.07.003
  22. Becker, M., De Vuyst, T., Seidl, M., & Schulte, M. (2021). Comparative Study on High Strain Rate Fracture Modelling Using the Application of Explosively Driven Cylinder Rings. Materials, 14(15), 4235. https://doi.org/10.3390/ma14154235
  23. Berking, T., Lorenz, S., Ulrich, A. B., Greiner, J., Kervio, E. J., Bremer, J., Wege, C., Kleinow, T., & Richert, C. (2021). The Effect of Pooling on the Detection of the Nucleocapsid Protein of SARS-CoV-2 with Rapid Antigen Tests. Diagnostics, 11(7), 1290. https://doi.org/10.3390/diagnostics11071290
  24. Brandhofer, S., Devitt, S., Wellens, T., & Polian, I. (2021). Special Session : Noisy Intermediate-Scale Quantum (NISQ) Computers : How They Work, How They Fail, How to Test Them? In A. Basio & K. Basu (Hrsg.), 2021 IEEE 39th VLSI Test Symposium (VTS). IEEE. https://doi.org/10.1109/VTS50974.2021.9441047
  25. Buyens, D. M. S., Pilcher, L. A., & Roduner, E. (2021). Towards a Molecular Understanding of Cation-Anion Interactions and Self-aggregation of Adeninate Salts in DMSO by NMR and UV Spectroscopy and Crystallography. ChemPhysChem, 22(19), 2025–2033. https://doi.org/10.1002/cphc.202100098
  26. Chatzianagnostou, D., & Staudacher, S. (2021). Comparison of Piston Concept Design Solutions for Composite Cycle Engines Part II : Design Considerations. Journal of Engineering for Gas Turbines and Power, 143(8), 081014. https://doi.org/10.1115/1.4049990
  27. Colditz, S., Looney, L. W., Bigiel, F., Fischer, C., Fischer, J., Hailey-Dunsheath, S., Herrera-Camus, R., Krabbe, A., LeDuc, H., Wong, T., & Zmuidzinas, J. (2021). Upgrading the Field-Imaging Far-Infrared Line Spectrometer for the Stratospheric Observatory for Infrared Astronomy with kinetic inductance detectors : enabling large sample (extragalactic) surveys. Journal of Astronomical Telescopes, Instruments, and Systems, 7(2), 025002. https://doi.org/10.1117/1.JATIS.7.2.025002
  28. Cunis, T., & Kolmanovsky, I. (2021). Viability, viscosity, and storage functions in model-predictive control with terminal constraints. Automatica, 131(September), 109748. https://doi.org/10.1016/j.automatica.2021.109748
  29. Densborn, S., & Sawodny, O. (2021). Flexible multibody system modelling of an aerial rescue ladder using Lagrange’s equations. Mathematical and Computer Modelling of Dynamical Systems, 27(1), 322–346. https://doi.org/10.1080/13873954.2021.1918175
  30. Dietzel, C. (2021). Braces of order p2q. Journal of Algebra and Its Applications, 20(08), 2150140. https://doi.org/10.1142/S0219498821501401
  31. Ebad-Allah, J., Rojewski, S., Vöst, M., Eickerling, G., Scherer, W., Uykur, E., Sankar, R., Varrassi, L., Franchini, C., Ahn, K. H., Kuneš, J., & Kuntscher, C. A. (2021). Pressure-Induced Excitations in the Out-of-Plane Optical Response of the Nodal-Line Semimetal ZrSiS. Physical Review Letters, 127(7), 076402. https://doi.org/10.1103/PhysRevLett.127.076402
  32. Eggenweiler, E., & Rybak, I. (2021). Effective Coupling Conditions for Arbitrary Flows in Stokes-Darcy Systems. Multiscale Modeling & Simulation, 19(2), 731–757. https://doi.org/10.1137/20M1346638
  33. Fischer, M., Riedel, O., Lechler, A., & Verl, A. (2021). Arithmetic Coding for Floating-Point Numbers. 2021 IEEE Conference on Dependable and Secure Computing (DSC). 2021 IEEE Conference on Dependable and Secure Computing (DSC), Aizuwakamatsu, Japan and Online. https://doi.org/10.1109/DSC49826.2021.9346236
  34. Fischer, S. B., & Hesselbarth, J. (2021). Off-Centre Fed Dipole Suppressing the Radiation of the Feed-Line by a Load Impedance at an Arbitrary Point. 2021 15th European Conference on Antennas and Propagation (EuCAP). 2021 15th European Conference on Antennas and Propagation (EuCAP), Online. https://doi.org/10.23919/EuCAP51087.2021.9411303
  35. Forbriger, T., Zürn, W., & Widmer-Schnidrig, R. (2021). Challenges and Perspectives for Lowering the Vertical-Component Long-Period Detection Level. Seismological Research Letters, 92(4), 2498–2512. https://doi.org/10.1785/0220200399
  36. Frenz, M. (2021). To Be or Not To Be ... a Global Citizen : Three doctors, three empires, and one subcontinent. Modern Asian Studies, 55(4), 1185–1226. https://doi.org/10.1017/S0026749X20000256
  37. Fritzsch, J., Schmid, T., & Wagner, S. (2021). Experiences from Large-Scale Model Checking : Verifying a Vehicle Control System with NuSMV. 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST), 372–382. https://doi.org/10.1109/ICST49551.2021.00049
  38. Graziotin, D., Lenberg, P., Feldt, R., & Wagner, S. (2021). Psychometrics in Behavioral Software Engineering: A Methodological Introduction with Guidelines. ACM Trans. Softw. Eng. Methodol., 31(1), Article 1. https://doi.org/10.1145/3469888
  39. Griffiths, S., Wedi, A., & Schmitz, G. (2021). Work of adhesion and reactive wetting in SnPb/Cu,Ni and SnBi/Cu,Ni soldering systems. Materials Characterization, 178(August), 111304. https://doi.org/10.1016/j.matchar.2021.111304
  40. Gupta, A., Bajpai, G., Singhal, P., Bagga, N., Prakash, O., Banchhor, S., Amrouch, H., & Chauhan, N. (2021). Traps Based Reliability Barrier on Performance and Revealing Early Ageing in Negative Capacitance FET. 2021 IEEE International Reliability Physics Symposium (IRPS). 2021 IEEE International Reliability Physics Symposium (IRPS), Online. https://doi.org/10.1109/IRPS46558.2021.9405185
  41. Gärtner, M., Kleinkopf, F., Andresen, M., & Hermann, S. (2021). Corpus reusability and copyright - challenges and opportunities. In H. Lüngen, M. Kupietz, P. Bański, A. Barbaresi, S. Clematide, & I. Pisetta (Hrsg.), Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-9) 2021. Limerick, 12 July 2021 (Online-Event) (S. 10–19). Leibniz-Institut für Deutsche Sprache. https://doi.org/10.14618/ids-pub-10470
  42. Göhring, C., Liu, J., Schiele, F., Möller, K., & Pott, P. P. (2021). Fabrication And Evaluation Of Simple Tissue-Mimicking Phantoms For Electrical Impedance Sensing. In S. Anom Ahmad, Y. K. Lee, & A. R. Mohd Radzol (Hrsg.), 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) (S. 194–199). IEEE. https://doi.org/10.1109/IECBES48179.2021.9398842
  43. Harsch, J., Capobianco, G., & Eugster, S. R. (2021). Finite element formulations for constrained spatial nonlinear beam theories. Mathematics and Mechanics of Solids, 26(12), 1838–1863. https://doi.org/10.1177/10812865211000790
  44. Jannes, D., Hörl, L., & Bauer, F. (2021). Swelling Behaviour of Static Seals in Redox Flow Batteries. Tribology Online, 16(2), 138–145. https://doi.org/10.2474/trol.16.138
  45. Jash, B., Tremmel, P., Jovanovic, D., & Richert, C. (2021). Single nucleotide translation without ribosomes. Nature Chemistry, 13(8), 751–757. https://doi.org/10.1038/s41557-021-00749-4
  46. Kattinger, J., Joas, S., Willems, F., Kreutzbruck, M., & Bonten, C. (2021). Application of the Folgar-Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions. Journal of Polymer Engineering, 41(7), 528–536. https://doi.org/10.1515/polyeng-2021-0117
  47. Khan, A., Ceylan, S., Driel, M. van, Giardini, D., Lognonné, P., Samuel, H., Schmerr, N. C., Stähler, S. C., Duran, A. C., Huang, Q., Kim, D., Broquet, A., Charalambous, C., Clinton, J. F., Davis, P. M., Drilleau, M., Karakostas, F., Lekic, V., McLennan, S. M., … Banerdt, W. B. (2021). Upper mantle structure of Mars from InSight seismic data. Science, 373(6553), 434–438. https://doi.org/10.1126/science.abf2966
  48. Khosla, R., & Sharma, S. K. (2021). Integration of Ferroelectric Materials : An Ultimate Solution for Next-Generation Computing and Storage Devices. ACS Applied Electronic Materials, 3(7), 2862–2897. https://doi.org/10.1021/acsaelm.0c00851
  49. Kilian, P., Köhler, A., Bergen, P. V., Gebauer, C., Pfeufer, B., Koller, O., & Bertsche, B. (2021). Principle Guidelines for Safe Power Supply Systems Development. IEEE Access, 9, 107751–107766. https://doi.org/10.1109/ACCESS.2021.3100711
  50. Killinger, A., Gantenbein, G., Illy, S., Ruess, T., Weggen, J., & Martinez-Garcia, V. (2021). Plasma Spraying of a Microwave Absorber Coating for an RF Dummy Load. Coatings, 11(7), 801. https://doi.org/10.3390/coatings11070801
  51. Korn, V. H., & Pluhackova, K. (2021). Influence of Charged Residues on the Membrane Insertion of Gasdermin A3. European Biophysics Journal, 50(supplement issue 1), S184. https://doi.org/10.1007/s00249-021-01558-w
  52. Krille, T., Retzko, S., Poser, R., & Wolfersdorf, J. von. (2021). Heat Transfer Measurements Using Multiple Thermochromic Liquid Crystals in Symmetric Cooling Channels. Journal of Turbomachinery, 143(8), 081005. https://doi.org/10.1115/1.4050436
  53. Lajewski, S., Mauch, A., Geiger, K., & Bonten, C. (2021). Rheological Characterization and Modeling of Thermally Unstable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Polymers, 13(14), 2294. https://doi.org/10.3390/polym13142294
  54. Linz, M., Exner, J., Kita, J., Bühner, F., Seipenbusch, M., & Moos, R. (2021). Discontinuous Powder Aerosol Deposition : An Approach to Prepare Films Using Smallest Powder Quantities. Coatings, 11(7), 844. https://doi.org/10.3390/coatings11070844
  55. Lylina, N., Atteya, A., & Wunderlich, H.-J. (2021). A Hybrid Protection Scheme for Reconfigurable Scan Networks. In A. Basio & K. Basu (Hrsg.), 2021 IEEE 39th VLSI Test Symposium (VTS). IEEE. https://doi.org/10.1109/VTS50974.2021.9441029
  56. Menold, T., Ametowobla, M., & Werner, J. H. (2021). Signatures of self-interstitials in laser-melted and regrown silicon. AIP Advances, 11(5), 055212. https://doi.org/10.1063/5.0050161
  57. Mlikota, M., Schmauder, S., Dogahe, K., & Božić, Ž. (2021). Influence of local residual stresses on fatigue crack initiation. In Ž. Božić, S. Schmauder, K. Monkova, A. Sedmak, S. Baragetti, & F. Iacoviello (Hrsg.), 4th International Conference on Structural Integrity and Durability, ICSID 2020 (Nr. 31; Nummer 31, S. 3–7). Elsevier. https://doi.org/10.1016/j.prostr.2021.03.002
  58. Murugan, S., Niesen, S., Kappler, J., Küster, K., Starke, U., & Buchmeiser, M. R. (2021). Ultra-Stable Cycling of High Capacity Room Temperature Sodium-Sulfur Batteries Based on Sulfurated Poly(acrylonitrile). Batteries & Supercaps, 4(10), 1636–1646. https://doi.org/10.1002/batt.202100125
  59. Nguyen, H.-H., Li, Z., Enenkel, T., Hildebrand, J., Bauer, M., Dyballa, M., & Estes, D. P. (2021). Probing the Interactions of Immobilized Ruthenium Dihydride Complexes with Metal Oxide Surfaces by MAS NMR : Effects on CO2 Hydrogenation. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 125(27), 14627–14635. https://doi.org/10.1021/acs.jpcc.1c02074
  60. Pfeifle, O., & Fichter, W. (2021). Cascaded Incremental Nonlinear Dynamic Inversion for Three-Dimensional Spline-Tracking with Wind Compensation. Journal of Guidance, Control, and Dynamics, 44(8), 1559–1571. https://doi.org/10.2514/1.G005785
  61. Pleiss, J. (2021). Standardized Data, Scalable Documentation, Sustainable Storage : EnzymeML As A Basis For FAIR Data Management In Biocatalysis. ChemCatChem, 13(18), 3909–3913. https://doi.org/10.1002/cctc.202100822
  62. Pluhackova, K., Mari, S. A., Engel, A., & Müller, D. J. (2021). Structural plasticity of gasdermin-A3 upon formation of membrane lytic pores. European Biophysics Journal, 50(supplement issue 1), S108. https://doi.org/10.1007/s00249-021-01558-w
  63. Prakash, O., Gupta, A., Pahwa, G., Chauhan, Y. S., & Amrouch, H. (2021). On the Critical Role of Ferroelectric Thickness for Negative Capacitance Transistor Optimization. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China. https://doi.org/10.1109/EDTM50988.2021.9420894
  64. Prakash, O., Dabhi, C. K., Chauhan, Y. S., & Amrouch, H. (2021). Transistor Self-Heating : The Rising Challenge for Semiconductor Testing. In A. Basio & K. Basu (Hrsg.), 2021 IEEE 39th VLSI Test Symposium (VTS). IEEE. https://doi.org/10.1109/VTS50974.2021.9441002
  65. Razmjooei, F., Morawietz, T., Taghizadeh, E., Hadjixenophontos, E., Mues, L., Gerle, M., Wood, B. D., Harms, C., Gago, A. S., Ansar, S. A., & Friedrich, K. A. (2021). Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule, 5(7), 1776–1799. https://doi.org/10.1016/j.joule.2021.05.006
  66. Sakiyama, N. R. M., Frick, J., Stipetic, M., Oertel, T., & Garrecht, H. (2021). Hygrothermal performance of a new aerogel-based insulating render through weathering : Impact on building energy efficiency. Building and Environment, 202(September), 108004. https://doi.org/10.1016/j.buildenv.2021.108004
  67. Salamin, S., Rapp, M., Pathania, A., Maity, A., Henkel, J., Mitra, T., & Amrouch, H. (2021). Power-Efficient Heterogeneous Many-Core Design With NCFET Technology. IEEE Transactions on Computers, 70(9), 1484–1497. https://doi.org/10.1109/TC.2020.3013567
  68. Santen, V. M. van, Thomann, S., Chauchan, Y. S., Henkel, J., & Amrouch, H. (2021). Reliability-Driven Voltage Optimization for NCFET-based SRAM Memory Banks. In A. Basio & K. Basu (Hrsg.), 2021 IEEE 39th VLSI Test Symposium (VTS). IEEE. https://doi.org/10.1109/VTS50974.2021.9441053
  69. Schatz, K., Franco-Moreno, J. J., Schäfer, M., Rose, A. S., Ferrario, V., Pleiss, J., Vázquez, P.-P., Ertl, T., & Krone, M. (2021). Visual Analysis of Large-Scale Protein-Ligand Interaction Data. Computer Graphics Forum, 40(6), 394–408. https://doi.org/10.1111/cgf.14386
  70. Schott, N. (2021). Development and Initial Validation of the Geriatric Balance Self-Efficacy (GBSE) Scale : A New Scale for Nursing Home Residents. Journal of Sport & Exercise Psychology, 43(S1), S89–S90. https://doi.org/10.1123/jsep.2021-0103
  71. Schott, N., & Minchella, A. (2021). Role of Functional and Clinical Parameters in Predicting Aging Perception Among Older Adults. Journal of Sport & Exercise Psychology, 43(S1), S90. https://doi.org/10.1123/jsep.2021-0103
  72. Seewald, A., Schonherr, S., Hörtnagl, H., Ehrlich, I., Schmuckermair, C., & Ferraguti, F. (2021). Fear Memory Retrieval Is Associated With a Reduction in AMPA Receptor Density at Thalamic to Amygdala Intercalated Cell Synapses. Frontiers in Synaptic Neuroscience, 13, 634558. https://doi.org/10.3389/fnsyn.2021.634558
  73. Seiberth, K., & Thiel, A. (2021). Should I Stay or Should I Go? : The Impact of Social Networks on the Choice to Play for a National Team in Football. International Journal of Environmental Research and Public Health, 18(15), 7719. https://doi.org/10.3390/ijerph18157719
  74. Stauch, G., Fritz, P., Rokai, R., Sediqi, A., Firooz, H., Völker, H. U., Weinhara, M., Mollin, J., Soudah, B., Dalquen, P., Brinckmann, F., & Dippon, J. (2021). The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. International Journal of Breast Cancer, 2021, 6625239. https://doi.org/10.1155/2021/6625239
  75. Stiesdal, N., Busche, H., Kleinbeck, K., Kumlin, J., Hansen, M. G., Büchler, H. P., & Hofferberth, S. (2021). Controlled multi-photon subtraction with cascaded Rydberg superatoms as single-photon absorbers. Nature Communications, 12(1), 4328. https://doi.org/10.1038/s41467-021-24522-w
  76. Suzuki, H., Liu, H., Bertinshaw, J., Ueda, K., Kim, H., Laha, S., Weber, D., Yang, Z., Wang, L., Takahashi, H., Fuersich, K., Minola, M., Lotsch, B. V., Kim, B. J., Yavas, H., Daghofer, M., Chaloupka, J., Khaliullin, G., Gretarsson, H., & Keimer, B. (2021). Proximate ferromagnetic state in the Kitaev model material α-RuCl3. Nature Communications, 12(1), 4512. https://doi.org/10.1038/s41467-021-24722-4
  77. Tahouni, Y., Krüger, F., Poppinga, S., Wood, D. M., Pfaff, M., Rühe, J., Speck, T., & Menges, A. (2021). Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration & Biomimetics, 16(5), 055002. https://doi.org/10.1088/1748-3190/ac0c8e
  78. Thomann, S., Li, C., Zhuo, C., Prakash, O., Yin, X., Hu, X. S., & Amrouch, H. (2021). On the Reliability of In-Memory Computing : Impact of Temperature on Ferroelectric TCAM. In A. Basio & K. Basu (Hrsg.), 2021 IEEE 39th VLSI Test Symposium (VTS). IEEE. https://doi.org/10.1109/VTS50974.2021.9441038
  79. Trieflinger, S., Münch, J., Wagner, S., Lang, D., & Roling, B. (2021). A Transformation Model for Excelling in Product Roadmapping in Dynamic and Uncertain Market Environments. In L. Ardito, A. Jedlitschka, M. Morisio, & M. Torchiano (Hrsg.), Product-Focused Software Process Improvement (S. 136--151). Springer International Publishing.
  80. Trübe, K., Bühlmeyer, A., Schulz, F., Grunwald, M. A., Zens, A., Baro, A., & Laschat, S. (2021). Hockey-stick indoles : turning a calamitic neutral mesogen into an ionic liquid crystal. Liquid Crystals, 48(13), 1919–1926. https://doi.org/10.1080/02678292.2021.1951382
  81. Vorobyov, V., Zaiser, S., Abt, N., Meinel, J., Dasari, D., Neumann, P., & Wrachtrup, J. (2021). Quantum Fourier transform for nanoscale quantum sensing. Npj Quantum Information, 7, 124. https://doi.org/10.1038/s41534-021-00463-6
  82. Wei, M.-L., Amrouch, H., Sung, C.-L., Lue, H.-T., Yang, C.-L., Wang, K.-C., & Lu, C.-Y. (2021). Robust Brain-Inspired Computing : On the Reliability of Spiking Neural Network Using Emerging Non-Volatile Synapses. 2021 IEEE International Reliability Physics Symposium (IRPS). 2021 IEEE International Reliability Physics Symposium (IRPS), Online. https://doi.org/10.1109/IRPS46558.2021.9405141
  83. Weirich, S., Khella, M. S., & Jeltsch, A. (2021). Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life, 11(7), 703. https://doi.org/10.3390/life11070703
  84. Wiranata Wijaya, A., Verhagen, N., Teleki, A., & Takors, R. (2021). Compartment-specific 13C metabolic flux analysis reveals boosted NADPH availability coinciding with increased cell-specific productivity for IgG1 producing CHO cells after MTA treatment. Engineering in Life Sciences, 21(12), 832–847. https://doi.org/10.1002/elsc.202100057
  85. Yu, J., Wagner, S., Wang, B., & Luo, F. (2021). A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems. SAE International Journal on Transportation Cybersecurity & Privacy, 4(2), 97--116. https://doi.org/10.4271/11-04-02-0005
  86. Yu, J., Wagner, S., & Luo, F. (2021). Automatic Generation of Security Requirements for Cyber-Physical Systems. In S. Paiva, S. I. Lopes, R. Zitouni, N. Gupta, S. F. Lopes, & T. Yonezawa (Hrsg.), Science and Technologies for Smart Cities (S. 372--385). Springer International Publishing.
  87. Zepp, A., Gladysz, S., Stein, K., & Osten, W. (2021). Optimization of the holographic wavefront sensor for open-loop adaptive optics under realistic turbulence : Part I: simulations. Applied Optics, 60(22), F88–F89. https://doi.org/10.1364/AO.425397
  88. Zervakis, G., Saadat, H., Amrouch, H., Gerstlauer, A., Parameswaran, S., & Henkel, J. (2021). Approximate Computing for ML : State-of-the-art, Challenges and Visions. ASPDAC ’21 : Proceedings of the 26th Asia and South Pacific Design Automation Conference, 189–196. https://doi.org/10.1145/3394885.3431632
  89. Zhu, R., Fogelholm, M., Larsen, T. M., Poppitt, S. D., Silvestre, M. P., Vestentoft, P. S., Jalo, E., Navas-Carretero, S., Huttunen-Lenz, M., Taylor, M. A., Stratton, G., Swindell, N., Kaartinen, N. E., Lam, T., Handjieva-Darlenska, T., Handjiev, S., Schlicht, W., Martinez, J. A., Seimon, R. V., … Raben, A. (2021). Corrigendum: A High-Protein, Low Glycemic Index Diet Suppresses Hunger but Not Weight Regain After Weight Loss : Results From a Large, 3-Years Randomized Trial (PREVIEW). Frontiers in Nutrition, 8, 736531. https://doi.org/10.3389/fnut.2021.736531
  90. Ziegler, M., Hägele, L., Gäbele, T., & Takors, R. (2021). CRISPRi enables fast growth followed by stable aerobic pyruvate formation in Escherichia coli without auxotrophy. Engineering in Life Sciences, 22(2), 70–84. https://doi.org/10.1002/elsc.202100021
  91. Björnmalm, M., Cappelluti, F., Dunning, A., Gheorghe, D., Goraczek, M. Z., Hausen, D., Hermann, S., Kraft, A., Lavanchy, P. M., Prisecaru, T., Sánchez, B., & Strötgen, R. (2020). Advancing Research Data Management in Universities of Science and Technology. In CESAER (Hrsg.), Whitepaper. Zenodo. https://doi.org/10.5281/zenodo.3665372
  92. Cutura, R., Kralj, C., & Sedlmair, M. (2020). DRUIDJS : A JavaScript Library for Dimensionality Reduction. 2020 IEEE Visualization Conference (VIS), 111–115. https://doi.org/10.1109/VIS47514.2020.00029
  93. Islam, A., Bezerianos, A., Lee, B., Blascheck, T., & Isenberg, P. (2020). Visualizing Information on Watch Faces : A Survey with Smartwatch Users. 2020 IEEE Visualization Conference (VIS), 156–160. https://doi.org/10.1109/VIS47514.2020.00038
  94. Kempter, F., Bechler, F., & Fehr, J. (2020). Calibration Approach for Muscle Activated Human Models in Pre-Crash Maneuvers with a Driver-in-the-Loop Simulator. In L. Hanson, D. Hogberg, & E. Brolin (Hrsg.), DHM2020 : Proceedings of the 6th International Digital Human Modeling Symposium (Nr. 11; Nummer 11, S. 227–236). IOS Press. https://doi.org/10.3233/ATDE200029
  95. Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again : Binary Security of WebAssembly. Proceedings of the 29th USENIX Security Symposium, 217–234. https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
  96. Mu\ noz Barón, M., Wyrich, M., & Wagner, S. (2020). An Empirical Validation of Cognitive Complexity as a Measure of Source Code Understandability. Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). https://doi.org/10.1145/3382494.3410636
  97. Polian, I., Anders, J., Becker, S., Bernardi, P., Chakrabarty, K., Elhamawy, N., Sauer, M., Singh, A., Sonza Reorda, M., & Wagner, S. (2020). Exploring the Mysteries of System-Level Test. 2020 IEEE 29th Asian Test Symposium (ATS), 1–6. https://doi.org/10.1109/ATS49688.2020.9301557
  98. Rapp, M., Elfatairy, O., Wolf, M., Henkel, J., & Amrouch, H. (2020). Towards NN-based Online Estimation of the Full-Chip Temperature and the Rate of Temperature Change. MLCAD ’20 : Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, 95–100. https://doi.org/10.1145/3380446.3430648
  99. Wachsmuth, M., Koppert, A., Zhang, L., & Schwieger, V. (2020). Development of an error-state Kalman Filter for Emergency Maneuvering of Trucks. In G. Lange (Hrsg.), 2020 European Navigation Conference (ENC). IEEE. https://doi.org/10.23919/ENC48637.2020.9317306
  100. Elsner, C., Rosenke, N., Weber, M., Hoppe, C., Drößler, S., & Hermann, S. (2019). Von Bottom up zu Top down. Umfrage: Forschende der Ingenieurwissenschaften erwarten klare Rahmenbedingungen von den Hochschulleitungen bei Open Access und Open Educational Resources. o-bib. Das offene Bibliotheksjournal, 6(2), 80–91. https://doi.org/10.5282/o-bib/2019H2S80-91

Best Practices

  1. Garbuglia, F., Saenen, B., Gaillard, V., & Engelhardt, C. (2021). D7.5 Good Practices in FAIR Competence Education. Zenodo. https://doi.org/10.5281/zenodo.5785253
  2. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  3. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53(10–11), Article 10–11. https://doi.org/10.1515/bd-2019-0098
  4. Austin, C. C., Bloom, T., Dallmeier-Tiessen, S., Khodiyar, V. K., Murphy, F., Nurnberger, A., Raymond, L., Stockhause, M., Tedds, J., Vardigan, M., & Whyte, A. (2017). Key components of data publishing: using current best practices to develop a reference model for data publishing. International Journal on Digital Libraries, 18(2), 77--92. https://doi.org/10.1007/s00799-016-0178-2
  5. Fehr, J., and Jan Heiland, Himpe, C., & Saak, J. (2016). Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software. AIMS Mathematics, 1(3), 261--281. https://doi.org/10.3934/math.2016.3.261

Beschreibung von Forschungsdaten

  1. Schembera, B., & Iglezakis, D. (o. J.). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In Metadata and Semantic Research. 12th International Conference, MTSR 2018, Limassol, Cyprus, 23-26 October 2018, Proceedings. Springer.
  2. Hirsch, M., Iglezakis, D., Leymann, F., & Zimmermann, M. (2022). The ReSUS Project - Infrastructure for Sharing Research Software. In E-Science-Tage 2021: Share Your Research Data (S. 267–276). heiBOOKS. https://doi.org/10.11588/HEIBOOKS.979.C13737
  3. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  4. de Vries, J., Tykhonov, V., Scharnhorst, A., Indarto, E., & Admiraal, F. (2021). Flexible metadata schemes for research data repositories -  The Common Framework in Dataverse and the CMDI use case. In M. Monachini & M. Eskevich (Hrsg.), Proceedings of the CLARIN Annual Conference 2021 (S. 109–118).
  5. Horsch, M. T., Morgado, J. F., Goldbeck, G., Iglezakis, D., Konchakova, N. A., & Schembera, B. (2021). Domain-specific metadata standardization in materials modelling. Domain Ontologies for Research Data Management in Industry Commons of Materials and Manufacturing. https://openreview.net/forum?id=uYgdGd7_wgH
  6. Iglezakis, D., Fuhrmans, M., Arndt, S., Demandt, É., Hachinger, S., Hausen, D., Lanza, G., Lipp, J., Stotzka, R., & Terzijska, D. (2021). Interoperabilität von Metadaten innerhalb der NFDI: Konsortienübergreifender Metadaten-Workshop am 2./3. Juli 2020. Bausteine Forschungsdatenmanagement, 2, 124–135. https://doi.org/10.17192/bfdm.2021.2.8313
  7. Schembera, B. (2021). Like a rainbow in the dark: metadata annotation for HPC applications in the age of dark data. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03602-6
  8. Wu, M., Juty, N., Research Metadata Schemas WG, R., Collins, J., Duerr, R., Ridsdale, C., Shepherd, A., Verhey, C., & Jael Castro, L. (2021). Guidelines for publishing structured metadata on the web (R. D. Alliance, Hrsg.). https://www.rd-alliance.org/system/files/documents/Guidelines%20for%20publishing%20structured%20data_V3.0_20210615.pdf
  9. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1, 28–38. https://doi.org/10.17192/bfdm.2020.1.8085
  10. Hub, T. C. I. (Hrsg.). (2020). A survey of Top-Level Ontologies.
  11. Hugo, W., Le Franc, Y., Coen, G., Parland-von Essen, J., & Bonino, L. (2020). D2.5 FAIR Semantics Recommendations Second Iteration. https://doi.org/10.5281/ZENODO.4314321
  12. Kesper, A., Wenz, V., & Taentzer, G. (2020). Detecting Quality Problems in Research Data: A Model-Driven Approach. http://arxiv.org/abs/2007.11298
  13. Schembera, B., & Iglezakis, D. (2020). EngMeta - Metadata for Computational Engineering. International Journal of Metadata, Semantics and Ontologies, 14(1), 26–38. https://doi.org/10.1504/IJMSO.2020.107792
  14. Selent, B., Kraus, H., Hansen, N., Schembera, B., Seeland, A., & Iglezakis, D. (2020). Management of Research Data in Computational Fluid Dynamics and Thermodynamics. In V. Heuveline, F. Gebhart, & N. Mohammadianbisheh (Hrsg.), E-Science-Tage 2019: Data to Knowledge (S. 128–139). HeiBOOKS. https://doi.org/10.11588/heibooks.598
  15. Grunzke, R., Hartmann, V., Jejkal, T., Kollai, H., Prabhune, A., Herold, H., Deicke, A., Dressler, C., Dolhoff, J., Stanek, J., Hoffmann, A., Müller-Pfefferkorn, R., Schrade, T., Meinel, G., Herres-Pawlis, S., & Nagel, W. E. (2019). The MASi repository service — Comprehensive, metadata-driven and multi-community research data management. Future Generation Computer Systems, 94, 879–894. https://doi.org/10.1016/j.future.2017.12.023
  16. Horsch, M. T., Niethammer, C., Boccardo, G., Carbone, P., Chiacchiera, S., Chiricotto, M., Elliott, J. D., Lobaskin, V., Neumann, P., Schiffels, P., Seaton, M. A., Todorov, I. T., Vrabec, J., & Cavalcanti, W. L. (2019). Semantic Interoperability and Characterization of Data Provenance in Computational Molecular Engineering. Journal of Chemical & Engineering Data, 65(3), 1313--1329. https://doi.org/10.1021/acs.jced.9b00739
  17. Iglezakis, D., & Schembera, B. (2019). EngMeta - a Metadata Scheme for the Engineering Sciences. DaRUS. https://doi.org/10.18419/darus-500
  18. Iglezakis, D. (2019). Relevance of Different Metadata Fields for the Description of Research Data from the Engineering Sciences (DaRUS, Hrsg.). https://doi.org/10.18419/darus-501
  19. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  20. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Hrsg.), Metadata and Semantic Research (Nr. 846; Nummer 846, S. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  21. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Hrsg.), Metadata and Semantic Research (Nr. 846; Nummer 846, S. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  22. Selent, B., Schembera, B., Iglezakis, D., & Seeland, A. (2019). Datenmanagement in Infrastrukturen, Prozessen und Lebenszyklen für die Ingenieurwissenschaften : Abschlussbericht des BMBF-Projektes Dipl-Ing. Universität Stuttgart; https://doi.org/10.2314/KXP:1693393980
  23. Sprenger, J., Zehl, L., Pick, J., Sonntag, M., Grewe, J., Wachtler, T., Grün, S., & Denker, M. (2019). odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments. Ludwig-Maximilians-Universität München. https://epub.ub.uni-muenchen.de/69215/
  24. Balatsoukas, P., Rousidis, D., & Garoufallou, E. (2018). A method for examining metadata quality in open research datasets using the OAI-PMH and SQL queries: the case of the Dublin Core „Subject“ element and suggestions for user-centred metadata annotation design. IJMSO, 13(1), 1–8. http://dblp.uni-trier.de/db/journals/ijmso/ijmso13.html#BalatsoukasRG18
  25. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  26. Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12(2), Article 2. https://doi.org/10.2218/ijdc.v12i2.577
  27. Gärtner, M., Hahn, U., & Hermann, S. (2018). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Hrsg.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (S. 563--570). European Language Resources Association (ELRA).
  28. Gärtner, M., Hahn, U., & Hermann, S. (2018). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. C. (Conference chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Hrsg.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA).
  29. Group, D. M. W. (2017). DataCite Metadata Schema for the Publication and Citation of Research Data. Version 4.1. https://doi.org/10.5438/0015
  30. Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., & others. (2017). Ground: A Data Context Service. CIDR.
  31. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., Gil, Y. G., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., & Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  32. Schembera, B., & Bönisch, T. (2017). Challenges of Research Data Management for High Performance Computing. International Conference on Theory and Practice of Digital Libraries, 140--151. https://link.springer.com/chapter/10.1007/978-3-319-67008-9_12
  33. Stein, A., Applegate, K. J., & Robbins, S. (2017). Achieving and Maintaining Metadata Quality: Toward a Sustainable Workflow for the IDEALS Institutional Repository. Cataloging & Classification Quarterly, 55(7–8), 644–666. https://doi.org/10.1080/01639374.2017.1358786
  34. Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino da Silva Santos, L. O., & Dumontier, M. (2017). A design framework and exemplar metrics for FAIRness. bioRxiv. https://doi.org/10.1101/225490
  35. Kohwalter, T., Oliveira, T., Freire, J., Clua, E., & Murta, L. (2016). Prov Viewer: A Graph-Based Visualization Tool for Interactive Exploration of Provenance Data. In M. Mattoso & B. Glavic (Hrsg.), Provenance and Annotation of Data and Processes (S. 71--82). Springer International Publishing.
  36. Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated quality assessment of metadata across open data portals. Journal of Data and Information Quality (JDIQ), 8(1), 2.
  37. Pimentel, J. F., Freire, J., Braganholo, V., & Murta, L. (2016). Tracking and Analyzing the Evolution of Provenance from Scripts. In M. Mattoso & B. Glavic (Hrsg.), Provenance and Annotation of Data and Processes (S. 16--28). Springer International Publishing.
  38. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/10.1016/j.commatsci.2015.09.013
  39. Schreiber, A. (2016). Standardisierung eines erweiterbaren Modells für Provenance-Daten (PROV-SPEC) (Nr. 2016–04). 2016–04, Article 2016–04.
  40. Wu, K., Coviello, E. N., Flanagan, S. M., Greenwald, M., Lee, X., Romosan, A., Schissel, D. P., Shoshani, A., Stillerman, J., & Wright, J. (2016). MPO: A System to Document and Analyze Distributed Heterogeneous Workflows. In M. Mattoso & B. Glavic (Hrsg.), Provenance and Annotation of Data and Processes (S. 166--170). Springer International Publishing.
  41. Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  42. Belhajjame, K., Zhao, J., Garijo, D., Gable, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the World Wide Web, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  43. Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14(0), 2. https://doi.org/10.5334/dsj-2015-002
  44. Chao, T. (2015). Mapping Methods Metadata for Research Data. International Journal of Digital Curation, 10(1), Article 1. https://doi.org/10.2218/ijdc.v10i1.347
  45. Moreau, L., Groth, P., Cheney, J., Lebo, T., & Miles, S. (2015). The rationale of PROV. Web Semantics: Science, Services and Agents on the World Wide Web, 35(4), 235–257. https://doi.org/10.1016/j.websem.2015.04.001
  46. Rasaiah, B. A., Jones, S. D., Bellman, C., Malthus, T. J., & Hueni, A. (2015). Assessing Field Spectroscopy Metadata Quality. Remote Sensing, 7(4), 4499–4526. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahJBMH15
  47. Rasaiah, B. A., Bellman, C., Jones, S. D., Malthus, T. J., & Roelfsema, C. M. (2015). Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sensing, 7(11), 15668–15701. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahBJMR15
  48. Starr, J., Castro, E., Crosas, M., Dumontier, M., Downs, R. R., Duerr, R., Haak, L. L., Haendel, M., Herman, I., Hodson, S., Hourclé, J., Kratz, J. E., Lin, J., Nielsen, L. H., Nurnberger, A., Proell, S., Rauber, A., Sacchi, S., Smith, A., … Clark, T. (2015). Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.1
  49. Amorim, R., Aguiar Castro, J., Rocha, J., & Ribeiro, C. (2014). LabTablet: Semantic Metadata Collection on a Multi-domain Laboratory Notebook. Communications in Computer and Information Science, 478, 193–205. https://doi.org/10.1007/978-3-319-13674-5_19
  50. Brauer, P., Czerniak, A., & Hasselbring, W. (2014). Start Smart and Finish Wise: The Kiel Marine Science Provenance-Aware Data Management Approach. In A. Chapman, B. Ludäscher, & A. Schreiber (Hrsg.), TAPP. USENIX Association. http://dblp.uni-trier.de/db/conf/tapp/tapp2014.html#BrauerCH14
  51. Farnel, S., & Shiri, A. (2014). Metadata for Research Data: Current Practices and Trends. In W. E. Moen & A. Rushing (Hrsg.), Dublin Core Conference (S. 74–82). Dublin Core Metadata Initiative. http://dblp.uni-trier.de/db/conf/dc/dc2014.html#FarnelS14
  52. Grunzke, R., Hesser, J., Starek, J., Kepper, N., Gesing, S., Hardt, M., Hartmann, V., Kindermann, S., Potthoff, J., Hausmann, M., Müller-Pfefferkorn, R., & Jäkel, R. (2014). Device-Driven Metadata Management Solutions for Scientific Big Data Use Cases. 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 317–321.
  53. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M., & Krüger, J. (2014). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744--1759. https://doi.org/10.1002/cpe.3116
  54. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M. P., & Krüger, J. (2014). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744–1759. http://dblp.uni-trier.de/db/journals/concurrency/concurrency26.html#GrunzkeBGHKBGPSSSSSMJNA014
  55. Malik, T. (2014). Geobase: Indexing NetCDF Files for large-scale Data Analysis. In Big Data Management, Technologies, and Applications (S. 295--313). IGI Global. https://doi.org/10.4018/978-1-4666-4699-5.ch012
  56. Rousidis, D., Sicilia, M.-Á., Garoufallou, E., & Balatsoukas, P. (2014). Data Quality Issues and Content Analysis for Research Data Repositories : The Case of Dryad. In P. Polydoratou & M. Dobreva (Hrsg.), ELPUB (S. 49–58). IOS Press. http://dblp.uni-trier.de/db/conf/elpub/elpub2014.html#RousidisSGB14
  57. Rousidis, D., Garoufallou, E., Balatsoukas, P., & Sicilia, M.-Á. (2014). Metadata for Big Data: A preliminary investigation of metadata quality issues in research data repositories. Inf. Services and Use, 34(3–4), 279–286. http://dblp.uni-trier.de/db/journals/isu/isu34.html#RousidisGBS14
  58. Tran, H. D., Holt, J., Goodrich, R. W., Mader, J. A., Swain, M., Laity, A. C., Kong, M., Gelino, C. R., & Berriman, G. B. (2014). Metadata and Data Management for the Keck Observatory Archive. https://doi.org/10.1117/12.2054830
  59. Bechhofer, S., Buchan, I., de Roure, D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., & Goble, C. (2013). Why linked data is not enough for scientists. Future Generation Computer Systems, 29(2), 599–611. https://doi.org/10.1016/j.future.2011.08.004
  60. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., & Zhao, J. (2013). PROV-O: The PROV Ontology. https://www.w3.org/TR/prov-o/
  61. Sahoo, S., Lebo, T., & McGuinness, D. (2013). PROV-O: The PROV Ontology [W3C Recommendation]. W3C.
  62. Grewe, J., Wachtler, T., & Benda, J. (2011). A Bottom-up Approach to Data Annotation in Neurophysiology. Frontiers in Neuroinformatics, 5. https://doi.org/10.3389/fninf.2011.00016
  63. Han, J., Miller, J. A., & Silver, G. A. (2011). SoPT: Ontology for simulation optimization for scientific experiments. Proceedings of the 2011 Winter Simulation Conference (WSC), 2909–2920. https://doi.org/10.1109/WSC.2011.6147994
  64. Murray-Rust, P., & Rzepa, H. S. (2011). CML: Evolution and design. J. Cheminformatics, 3, 44. http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf3.html#Murray-RustR11
  65. Murray-Rust, P., Townsend, J., Adams, S. E., Phadungsukanan, W., & Thomas, J. (2011). The semantics of Chemical Markup Language (CML): dictionaries and conventions. J. Cheminformatics, 3, 43. http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf3.html#Murray-RustTAPT11
  66. Park, J.-R., & Tosaka, Y. (2010). Metadata Quality Control in Digital Repositories and Collections: Criteria, Semantics, and Mechanisms. Cataloging & Classification Quarterly, 48(8), 696–715. https://doi.org/10.1080/01639374.2010.508711
  67. Park, J.-R. (2009). Metadata Quality in Digital Repositories: A Survey of the Current State of the Art. Cataloging & Classification Quarterly, 47(3–4), 213–228. https://doi.org/10.1080/01639370902737240
  68. Hillmann, D. I. (2008). Metadata Quality: From Evaluation to Augmentation. Cataloging & Classification Quarterly, 46(1), 65–80. https://doi.org/10.1080/01639370802183008
  69. Vardigan, M., Heus, P., & Thomas, W. (2008). Data Documentation Initiative: Toward a Standard for the Social Sciences. IJDC, 3(1), 107–113. https://doi.org/10.2218/ijdc.v3i1.45
  70. Bruce, T. R., & Hillmann, D. I. (2004). The Continuum of Metadata Quality: Defning, Expression, Exploiting: Bd. Metadata in Practice. ALA Editions.
  71. Lautenschlager, M., Toussaint, F., Thiemann, H., & Reinke, M. (1998). The CERA-2 data model. https://www.pik-potsdam.de/cera/Descriptions/Publications/Papers/9807_DKRZ_TechRep15/cera2.pdf

Anforderungen der Forschungsförderer, politische Entwicklung

  1. für Bildung und Forschung (BMBF), B. (Hrsg.). (2016). Open Access in Deutschland. https://www.bmbf.de/pub/Open_Access_in_Deutschland.pdf

Kontakt

 

FoKUS - Kompetenzzentrum für Forschungsdaten

Zum Seitenanfang