Literatur

Sie wollen tiefer einsteigen? Aktuelle Literaturempfehlungen zum Thema Forschungsdatenmanagement.

Rechtliche Fragestellungen

  1. Brettschneider, P., Axtmann, A., Böker, E., & von Suchodoletz, D. (2021). Offene Lizenzen für Forschungsdaten - Rechtliche Bewertung und Praxistauglichkeit verbreiteter Lizenzmodelle. O-Bib. Das Offene Bibliotheksjournal, 8(3), 1–22. https://doi.org/10.5282/o-bib/5749
  2. Kleinkopf, F., Jacke, J., & Gärtner, M. (2021). Urheberrechtliche Grenzen der Nachnutzung wissenschaftlicher Korpora bei computergestützten Verfahren und digitalen Ressourcen.
  3. Wirth, T. (2020). Die Pflicht zur Löschung von Forschungsdaten – Urheber- und Datenschutzrecht im Widerspruch zu den Erfordernissen guter wissenschaftlicher Praxis? Zeitschrift für Urheber- und Medienrecht (ZUM), 64(8/9), 585–592. https://www.zew.de/publikationen/die-pflicht-zur-loeschung-von-forschungsdaten-urheber-und-datenschutzrecht-im-widerspruch-zu-den-erfordernissen-guter-wissenschaftlicher-praxis
  4. Kubis, M., Naczinsky, M., Selzer, A., Sperlich, T., Steiner, S., & Waldmann, U. (2019). Der digitale nachlass - Eine Untersuchung aus rechtlicher und technischer Sicht (F.-I. für Sichere Informationstechnologie, U. Bremen/IGMR, & U. Regensburg, Hrsg.). https://doi.org/10.24406/sit-n-572149
  5. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53(10–11), Article 10–11. https://doi.org/10.1515/bd-2019-0098
  6. Kreutzer, T., & Lahmann, H. (2019). Rechtsfragen bei Open Science. Hamburg University Press. https://doi.org/10.15460/HUP.195
  7. Johannes, P. C., Potthoff, J., Roßnagel, A., Neumair, B., Madiesh, M., & Hackel, S. (2013). Beweissicheres elektronisches Laborbuch (Nomos, Hrsg.).
  8. Meyermann, A., & Porzelt, M. (2014). Hinweise zur Anonymisierung von qualitativen Daten. forschungsdaten bildung informiert, 1, Article 1. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-1.pdf
  9. Ebel, T., & Meyermann, A. (2015). Hinweise zur Anonymisierung von quantitativen Daten. forschungsdaten bildung informiert, 3, Article 3. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-3.pdf
  10. Volkmann, S., Feiten, L., Zimmermann, C., Sester, S., Wehle, L., & Becker, B. (2016). Digitale Tarnkappe: Anonymisierung in Videoaufnahmen. In H. C. Mayr & M. Pinzger (Hrsg.), GI-Jahrestagung: Bd. P-259 (S. 413–426). GI. http://dblp.uni-trier.de/db/conf/gi/gi2016.html#VolkmannFZSWB16
  11. Klimpel, P. (2018). Mehr als Materialbewahrung Über die Bedeutung von Rechteinformationen und Lizenzierung in Bibliotheken. Lizenzangaben und Rechtedokumentationen im Dialog – Datenflüsse nachhaltig gestalten.
  12. Nationalbibliothek, D. (Hrsg.). (2018). Lizenzangaben und Rechtedokumentationen im Dialog - Datenflüsse nachhaltig gestalten.
  13. Hannover, L. U., & Informationsbibliothek, T. (2018). FAQs Zu Rechtlichen Aspekten Im Umgang Mit Forschungsdaten. https://doi.org/10.5281/zenodo.1173546
  14. Lauber‐Rönsberg, A., Krahn, P., & Baumann, P. (2018). Gutachten zu den rechtlichen Rahmenbedingungen des Forschungsdatenmanagements. https://tu-dresden.de/gsw/jura/igewem/jfbimd13/ressourcen/dateien/publikationen/DataJus_Zusammenfassung_Gutachten_12-07-18.pdf?lang=de
  15. Stietenroth, D., Nieschulze, J., & Arend, K. (2005). Rechtliche Aspekte und Umsetzung des Datenmanagement in internationalen interdisziplinären Forschungsprojekten. Zeitschrift Für Agrarinformatik, 3, 64–75. http://www.gil.de/publications/zai/archiv/11_3_2005.pdf
  16. Guibault, L., & Wiebe, A. (2013). Safe to be open. Study on the protection of research data and recommendations für access and usage. Universitätsverlag Göttingen.

Forschungssoftware

  1. Hirsch, M., Iglezakis, D., Leymann, F., & Zimmermann, M. (2022). The ReSUS Project - Infrastructure for Sharing Research Software. In E-Science-Tage 2021: Share Your Research Data (S. 267–276). heiBOOKS. https://doi.org/10.11588/HEIBOOKS.979.C13737
  2. Martinez, P. A., Barker, M., Struck, A., Castro, L. J., Erdmann, C., Garijo, D., Gesing, S., Loewe, A., & Moldón, J. (2022). A Survey on Adoption Guidelines for the FAIR4RS                    Principles. Zenodo. https://doi.org/10.5281/zenodo.6374598
  3. Martinez, P. A., Struck, A., Castro, L. J., Garijo, D., Loewe, A., Gesing, S., Barker, M., Chue Hong, N., Erdmann, C., Martinez-Ortiz, C., & Sansone, S.-A. (2022). A Survey on Adoption Guidelines for the FAIR4RS                    Principles: Dataset. Zenodo. https://doi.org/10.5281/zenodo.6375540
  4. Martinez-Ortiz, C., Katz, D. S., Lamprecht, A.-L., Barker, M., Loewe, A., Fouilloux, A., Wyngaard, J., Garijo, D., Moldon, J., Castro, L. J., Wheeler, D., Albers, J. R. D., & Lee, A. (2022). FAIR4RS: Adoption support. Zenodo. https://doi.org/10.5281/zenodo.6258366
  5. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  6. Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., & Carver, J. C. (2021). Software engineering practices for scientific software development: A systematic mapping study. Journal of Systems and Software, 172, 110848. https://doi.org/10.1016/j.jss.2020.110848
  7. Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2021). FAIR Principles for Research Software (FAIR4RS Principles). https://doi.org/10.15497/RDA00068
  8. Katz, D. S., Gruenpeter, M., & Honeyman, T. (2021). Taking a fresh look at FAIR for research software. Patterns, 2(3), Article 3. https://doi.org/10.1016/j.patter.2021.100222
  9. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2021). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423--443. https://doi.org/10.1016/j.camwa.2020.02.012
  10. Lee, G., Bacon, S., Bush, I., Fortunato, L., Gavaghan, D., Lestang, T., Morton, C., Robinson, M., Rocca-Serra, P., Sansone, S.-A., & Webb, H. (2021). Barely sufficient practices in scientific computing. Patterns, 2(2), 100206. https://doi.org/10.1016/j.patter.2021.100206
  11. Lee, G., Bacon, S., Bush, I., Fortunato, L., Gavaghan, D., Lestang, T., Morton, C., Robinson, M., Rocca-Serra, P., Sansone, S.-A., & Webb, H. (2021). Barely sufficient practices in scientific computing. Patterns, 2(2), 100206. https://doi.org/10.1016/j.patter.2021.100206
  12. van Aalst, M., Ebenhoeh, O., & Matuszynska, A. (2021). Constructing and analysing dynamic models with modelbase v1.2.3: a    software update. BMC BIOINFORMATICS, 22(1), Article 1. https://doi.org/10.1186/s12859-021-04122-7
  13. Alliez, P., Cosmo, R. D., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N. (2020). Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria. Computing in Science  Engineering, 22(1), 39–52. https://doi.org/10.1109/MCSE.2019.2949413
  14. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  15. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  16. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  17. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
  18. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
  19. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). Open Source Research Software. Computer, 53(8), 84–88. https://doi.org/10.1109/MC.2020.2998235
  20. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1. https://doi.org/10.17192/BFDM.2020.1.8085
  21. Magaña, P., Del-Rosal-Salido, J., Cobos, M., Lira-Loarca, A., & Ortega-Sánchez, M. (2020). Approaching Software Engineering for Marine Sciences: A Single Development Process for Multiple End-User Applications. Journal of Marine Science and Engineering, 8(5), 350. https://doi.org/10.3390/jmse8050350
  22. Pianosi, F., Sarrazin, F., & Wagener, T. (2020). How successfully is open-source research software adopted? Results and implications of surveying the users of a sensitivity analysis toolbox. Environmental Modelling & Software, 124, 104579. https://doi.org/10.1016/j.envsoft.2019.104579
  23. Ruiz-Rube, I., Person, T., Dodero, J. M., Mota, J. M., & Sánchez-Jara, J. M. (2020). Applying static code analysis for domain-specific languages. Software and Systems Modeling, 19(1), 95--110. https://doi.org/10.1007/s10270-019-00729-w
  24. SIRS, E. E. B. W. G. (WG) A. T. F. (TF). (2020). Scholarly infrastructures for research software (E. Commission, Hrsg.). European Commission. https://op.europa.eu/s/oMEw
  25. Trisovic, A., Durbin, P., Schlatter, T., Durand, G., Barbosa, S., Brooke, D., & Crosas, M. (2020). Advancing computational reproducibility in the Dataverse data repository  platform. http://arxiv.org/abs/2005.02985
  26. Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., Martinez-Ortiz, C., der Velden, Y. T., & van Werkhoven, B. (2019). Raising the Profile of Research Software: Recommendations for Funding Agencies and Research Institutions (NWO, Hrsg.).
  27. Ballhausen, M. (2019). Free and Open Source Software Licenses Explained. IEEE Computer, 52(6), 82–86. http://dblp.uni-trier.de/db/journals/computer/computer52.html#Ballhausen19
  28. Druskat, S., Spaaks, J. H., Chue Hong, N., Haines, R., & Baker, J. (2019). Citation File Format (CFF) - Specifications. Zenodo. https://doi.org/10.5281/zenodo.3515946
  29. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2019). Sustainable Research Software Hand-Over. CoRR, abs/1909.09469. http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-09469
  30. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2019). Sustainable Research Software Hand-Over. CoRR, abs/1909.09469. http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-09469
  31. Gomez-Diaz, T., & Recio, T. (2019). On the evaluation of research software: the CDUR procedure. F1000Research, 8, 1353. https://doi.org/10.12688/f1000research.19994.2
  32. Gärtner, M. (2019). RePlay-DH Client v1.3.0. https://doi.org/10.18419/darus-475
  33. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2019). FAIR and Open Computer Science Research Software. In arXiv preprint arXiv:1908.05986. http://dblp.uni-trier.de/db/journals/corr/corr1908.html#abs-1908-05986
  34. Hermann, S., Iglezakis, D., & Seeland, A. (2019). Requirements for Finding Research Data and Software. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900480
  35. Hsu, L., Hutchison, V. B., & Langseth, M. L. (2019). Measuring sustainability of seed-funded earth science informatics projects. PLOS ONE, 14(10), 1–25. https://doi.org/10.1371/journal.pone.0222807
  36. Johanson, A. N., & Hasselbring, W. (2019). Software Engineering for Computational Science. In S. Becker, I. Bogicevic, G. Herzwurm, & S. Wagner (Hrsg.), SE/SWM: Bd. P-292 (S. 43–44). GI. http://dblp.uni-trier.de/db/conf/se/se2019.html#JohansonH19
  37. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1--23. https://doi.org/10.3233/ds-190026
  38. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1--23. https://doi.org/10.3233/ds-190026
  39. Li, K., Chen, P.-Y., & Yan, E. (2019). Challenges of measuring software impact through citations: An examination of the lme4 R package. Journal of Informetrics, 13(1), 449--461. https://doi.org/10.1016/j.joi.2019.02.007
  40. Scheliga, K., Pampel, H., Konrad, U., Fritzsch, B., Schlauch, T., Nolden, M., Zu Castell, W., Finke, A., Hammitzsch, M., Bertuch, O., & Denker, M. (2019). Dealing with research software: Recommendations for best practices. https://doi.org/10.2312/OS.HELMHOLTZ.003
  41. Siepel, A. (2019). Challenges in funding and developing genomic software: roots and remedies. Genome Biology, 20(1), 147--. https://doi.org/10.1186/s13059-019-1763-7
  42. Task Group Forschungssoftware Des Arbeitskreises Open Science Der Helmholtz-Gemeinschaft. (2019). Muster-Richtlinie Nachhaltige Forschungssoftware an den Helmholtz-Zentren. https://doi.org/10.2312/OS.HELMHOLTZ.007
  43. van de Sandt, S., Nielsen, L. H., Ioannidis, A., Muench, A., Henneken, E. A., Accomazzi, A., Bigarella, C., Lopez, J. B. G., & Dallmeier-Tiessen, S. (2019). Practice meets Principle: Tracking Software and Data Citations to Zenodo DOIs. CoRR, abs/1911.00295. http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-00295
  44. VSNU, NFU, KNAW, NWO and ZonMw (Hrsg.). (2019). Room for everyone’s talent.
  45. AlNoamany, Y., & Borghi, J. A. (2018). Towards computational reproducibility: researcher perspectives on the use and sharing of software. PeerJ Computer Science, 4, e163. https://doi.org/10.7717/peerj-cs.163
  46. Cruz, M. J., Kurapati, S., & Turkyilmaz-van der Velden, Y. (2018). The Role of Data Stewardship in Software Sustainability and Reproducibility. 2018 IEEE 14th International Conference on e-Science (e-Science), 1–8. https://doi.org/10.1109/eScience.2018.00009
  47. Hallé, S., Khoury, R., & Awesso, M. (2018). Streamlining the Inclusion of Computer Experiments In a Research Paper. IEEE Computer, 51(11), 78–89. http://dblp.uni-trier.de/db/journals/computer/computer51.html#HalleKA18
  48. Hinsen, K. (2018). Verifiability in computer-aided research: the role of digital scientific notations at the human-computer interface. PeerJ Computer Science, 4, e158. https://doi.org/10.7717/peerj-cs.158
  49. Johanson, A., & Hasselbring, W. (2018). Software Engineering for Computational Science: Past, Present, Future. Computing in Science  Engineering, 20(2), 90–109. https://doi.org/10.1109/MCSE.2018.021651343
  50. Karimzadeh, M., & Hoffman, M. M. (2018). Top considerations for creating bioinformatics software documentation. BRIEFINGS IN BIOINFORMATICS, 19(4), 693–699. https://doi.org/10.1093/bib/bbw134
  51. Katerbow, M., & Feulner, G. (2018). Handreichung zum Umgang mit Forschungssoftware. Zenodo. https://doi.org/10.5281/ZENODO.1172970
  52. Katz, D. S., & Hong, N. P. C. (2018). Software Citation in Theory and Practice. In J. H. Davenport, M. Kauers, G. Labahn, & J. Urban (Hrsg.), ICMS (Bd. 10931, S. 289–296). Springer. http://dblp.uni-trier.de/db/conf/icms/icms2018.html#KatzH18
  53. Kuzak, M., Harrow, J., Jimenez, R. C., Martinez, P. A., Psomopoulos, F. E., Svobodová Vařeková, R., & Via, A. (2018). Lesson Development for Open Source Software Best Practices Adoption. 2018 IEEE 14th International Conference on e-Science (e-Science), 19–20. https://doi.org/10.1109/eScience.2018.00011
  54. Lee, B. D. (2018). Ten simple rules for documenting scientific software. PLOS Computational Biology, 14(12), e1006561. https://doi.org/10.1371/journal.pcbi.1006561
  55. Russell, P. H., Johnson, R. L., Ananthan, S., Harnke, B., & Carlson, N. E. (2018). A large-scale analysis of bioinformatics code on GitHub. PLOS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205898
  56. Rüde, U., Willcox, K., McInnes, L. C., & Sterck, H. D. (2018). Research and Education in Computational Science and Engineering. SIAM Review, 60(3), 707–754. http://dblp.uni-trier.de/db/journals/siamrev/siamrev60.html#RudeWMS18
  57. Schlauch, T., Meinel, M., & Haupt, C. (2018). DLR Software Engineering Guidelines. https://doi.org/10.5281/zenodo.1344612
  58. Allen, A., Aragon, C. R., Becker, C., Carver, J., Chis, A., Combemale, B., Croucher, M., Crowston, K., Garijo, D., Gehani, A., Goble, C. A., Haines, R., Hirschfeld, R., Howison, J., Huff, K. D., Jay, C., Katz, D. S., Kirchner, C., Kuksenok, K., … Vinju, J. J. (2017). Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). Dagstuhl Manifestos, 6(1), 1–20. http://dblp.uni-trier.de/db/journals/dagstuhl-manifestos/dagstuhl-manifestos6.html#AllenABCCCCCGGG17
  59. Boettiger, C. (2017). Generating CodeMeta Metadata for R Packages. The Journal of Open Source Software, 2(19), 454. https://doi.org/10.21105/joss.00454
  60. Childers, B. R., & Chrysanthis, P. K. (2017). Artifact Evaluation: Is It a Real Incentive? 2017 IEEE 13th International Conference on e-Science (e-Science), 488–489. https://doi.org/10.1109/eScience.2017.79
  61. Henderson, F. (2017). Software Engineering at Google. CoRR, abs/1702.01715. http://arxiv.org/abs/1702.01715
  62. Hinsen, K. (2017). The Roles of Code in Computational Science. Computing in Science  Engineering, 19(1), 78–82. https://doi.org/10.1109/MCSE.2017.18
  63. Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., Capella-Gutierrez, S., Hong, N. C., Cook, M., Corpas, M., Flannery, M., Garcia, L., Gelp\’ı, J. Ll., Gladman, S., Goble, C., Ferreiro, M. G., Gonzalez-Beltran, A., Griffin, P. C., Grüning, B., … Crouch, S. (2017). Four simple recommendations to encourage best practices in research software. F1000Research, 6, 876. https://doi.org/10.12688/f1000research.11407.1
  64. Karimzadeh, M., & Hoffman, M. M. (2017). Top considerations for creating bioinformatics software documentation. Briefings in Bioinformatics, 19(4), 693–699. https://doi.org/10.1093/bib/bbw134
  65. Taschuk, M., & Wilson, G. (2017). Ten simple rules for making research software more robust. PLOS Computational Biology, 13(4), 1–10. https://doi.org/10.1371/journal.pcbi.1005412
  66. Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough practices in scientific computing. PLOS Computational Biology, 13(6), 1–20. https://doi.org/10.1371/journal.pcbi.1005510
  67. Boisvert, R. F. (2016). Incentivizing reproducibility. Communications of the ACM, 59(10), 5--5. https://doi.org/10.1145/2994031
  68. Collberg, C., & Proebsting, T. A. (2016). Repeatability in Computer Systems Research. Commun. ACM, 59(3), 62--69. https://doi.org/10.1145/2812803
  69. Febrero, F., Calero, C., & Moraga, M. Á. (2016). Software reliability modeling based on ISO/IEC SQuaRE. Information and Software Technology, 70, 18--29. https://doi.org/10.1016/j.infsof.2015.09.006
  70. Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., Karlstrom, L., Lee, H., Mills, H. J., Oh, J.-H., Pierce, S. A., Pope, A., Tzeng, M. W., Villamizar, S. R., & Yu, X. (2016). Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance. Earth and Space Science, 3(10), 388--415. https://doi.org/10.1002/2015ea000136
  71. Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. PeerJ Computer Science, 2, e86. https://doi.org/10.7717/peerj-cs.86
  72. Yu, X., Duffy, C. J., Rousseau, A. N., Bhatt, G., Alvarez, A. P., & Charron, D. (2016). Open science in practice: Learning integrated modeling of coupled    surface-subsurface flow processes from scratch. EARTH AND SPACE SCIENCE, 3(5), 190–206. https://doi.org/10.1002/2015EA000155
  73. McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández, C. X., Schwantes, C. R., Wang, L.-P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A Modern Open Library for the Analysis of    Molecular Dynamics Trajectories. Biophysical Journal, 109(8), 1528-- 1532. https://doi.org/10.1016/j.bpj.2015.08.015
  74. Hastings, J., Haug, K., & Steinbeck, C. (2014). Ten recommendations for software engineering in research. GIGASCIENCE, 3. https://doi.org/10.1186/2047-217X-3-31
  75. Hong, N. C. (2014). Minimal information for reusable scientific software. Proceedings of the 2nd Workshop on Working towards Sustainable Scientific Software: Practice and Experience.
  76. Peer, L., Green, A., & Stephenson, E. (2014). Committing to Data Quality Review. International Journal of Digital Curation, 9(1), 263--291. https://doi.org/10.2218/ijdc.v9i1.317
  77. Stodden, V., & Miguez, S. (2014). Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research. Journal of Open Research Software, 2(1), Article 1. https://doi.org/10.5334/jors.ay
  78. Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P. (2014). Best practices for scientific computing. PLoS Biol, 12(1), Article 1. https://doi.org/10.1371/journal.pbio.1001745
  79. Bangerth, W., & Heister, T. (2013). What makes computational open source software libraries successful? Computational Science & Discovery, 6(1), 015010. https://doi.org/10.1088/1749-4699/6/1/015010
  80. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), 1–4. https://doi.org/10.1371/journal.pcbi.1003285
  81. Tomas, P., Escalona, M. J., & Mejias, M. (2013). Open source tools for measuring the Internal Quality of Java software products. A survey. Computer Standards & Interfaces, 36(1), 244--255. https://doi.org/10.1016/j.csi.2013.08.006
  82. Turk, M. J. (2013). How to Scale a Code in the Human Dimension. CoRR, abs/1301.7064. http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-7064
  83. Howison, J., & Herbsleb, J. D. (2011). Scientific software production. Proceedings of the ACM 2011 conference on Computer supported cooperative work - CSCW \textquotesingle11. https://doi.org/10.1145/1958824.1958904
  84. Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J., Beard, S., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., Raman, A., Liu, F., & Walker, D. (2011). A survey of the practice of computational science. State of the Practice Reports on - SC \textquotesingle11. https://doi.org/10.1145/2063348.2063374
  85. Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson, G. (2009). How do scientists develop and use scientific software? 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering, 1–8. https://doi.org/10.1109/SECSE.2009.5069155
  86. Ackroyd, K. S., Kinder, S. H., Mant, G. R., Miller, M. C., Ramsdale, C. A., & Stephenson, P. C. (2008). Scientific Software Development at a Research Facility. IEEE Software, 25(4), 44–51. https://doi.org/10.1109/MS.2008.93
  87. Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L., Hollingsworth, J. K., Shull, F., & Zelkowitz, M. V. (2008). Understanding the High-Performance-Computing Community: A Software Engineer’s Perspective. IEEE Software, 25(4), 29–36. https://doi.org/10.1109/MS.2008.103
  88. Glass, R. L. (2008). Two Mistakes and Error-Free Software: A Confession. IEEE Software, 25(4), 96–96. https://doi.org/10.1109/MS.2008.102
  89. Hall, T., Sharp, H., Beecham, S., Baddoo, N., & Robinson, H. (2008). What Do We Know about Developer Motivation? IEEE Software, 25(4), 92–94. https://doi.org/10.1109/MS.2008.105
  90. Hatton, L. (2008). Testing the Value of Checklists in Code Inspections. IEEE Software, 25(4), 82–88. https://doi.org/10.1109/MS.2008.100
  91. Kendall, R., Carver, J. C., Fisher, D., Henderson, D., Mark, A., Post, D., Rhoades, C. E., & Squires, S. (2008). Development of a Weather Forecasting Code: A Case Study. IEEE Software, 25(4), 59–65. https://doi.org/10.1109/MS.2008.86
  92. Sanders, R., & Kelly, D. (2008). Dealing with Risk in Scientific Software Development. IEEE Software, 25(4), 21–28. https://doi.org/10.1109/MS.2008.84
  93. Sangwan, R. S., Vercellone-Smith, P., & Laplante, P. A. (2008). Structural Epochs in the Complexity of Software over Time. IEEE Software, 25(4), 66–73. https://doi.org/10.1109/MS.2008.96
  94. Segal, J., & Morris, C. (2008). Developing Scientific Software. IEEE Software, 25(4), 18–20. https://doi.org/10.1109/MS.2008.85
  95. Spinellis, D. (2008). The Way We Program. IEEE Software, 25(4), 89–91. https://doi.org/10.1109/MS.2008.101
  96. Vigder, M., Vinson, N. G., Singer, J., Stewart, D., & Mews, K. (2008). Supporting Scientists’ Everyday Work: Automating Scientific Workflows. IEEE Software, 25(4), 52–58. https://doi.org/10.1109/MS.2008.97
  97. Woollard, D., Medvidovic, N., Gil, Y., & Mattmann, C. (2008). Scientific Software as Workflows: From Discovery to Distribution. IEEE Software, 25(4), 37–43. https://doi.org/10.1109/MS.2008.92
  98. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., & others. (2006). The landscape of parallel computing research: A view from berkeley.
  99. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., & others. (2006). The landscape of parallel computing research: A view from berkeley.
  100. Crowder, H. P., Dembo, R. S., & Mulvey, J. M. (1979). On Reporting Computational Experiments with Mathematical Software. ACM Trans. Math. Softw., 5(2), 193–203. http://dblp.uni-trier.de/db/journals/toms/toms5.html#CrowderDM79

Befragungen

  1. Borschewski, D., Voigt, M. P., Albrecht, S., Roth, D., Kreimeyer, M., & Leistner, P. (2023). Why are adaptive facades not widely used in practice? Identifying ecological and economical benefits with life cycle assessment. Building and Environment. https://doi.org/10.1016/j.buildenv.2023.110069
  2. Braun, S., Dalibor, M., Jansen, N., Jarke, M., Koren, I., Quix, C., Rumpe, B., Wimmer, M., & Wortmann, A. (2023). Engineering Digital Twins and Digital Shadows as Key Enablers for Industry 4.0. In B. Vogel-Heuser & M. Wimmer (Hrsg.), Digital Transformation: Core Technologies and Emerging Topics from a Computer Science Perspective (S. 3--31). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-65004-2_1
  3. Ibach, M., Steigerwald, J., & Weigand, B. (2023). Thixotropic effects in oscillating droplets. 11th International Conference on Multiphase Flow (ICMF), April 2–7, 2023, Kobe, Japan.
  4. Reinhardt, R., Hirzel, K., Link, G., Eisler, S. A., Hägele, T., Parson, M. A. H., Burke, J. E., Hausser, A., & Leonard, T. A. (2023). PKD autoinhibition in trans regulates activation loop autophosphorylation in cis. Proceedings of the National Academy of Sciences, 120(7), e2212909120. https://doi.org/10.1073/pnas.2212909120
  5. Schlottke, A., Ibach, M., Steigerwald, J., & Weigand, B. (2023). Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’21 (S. 239--257). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_14
  6. Seibold, F., & Weigand, B. (2023). Numerical investigation of the flow and heat transfer in convergent swirl chambers. In High Performance Computing in Science and Engineering ’21 (S. 259--274). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_15
  7. Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numerical Methods for Partial Differential Equations, 39(1), 622–656. https://doi.org/10.1002/num.22906
  8. Sun, K., & Simon, S. (2023). A resolution enhancement plug-in for deformable registration of medical images. Biomedical Signal Processing and Control, 79(1), 104090. https://doi.org/10.1016/j.bspc.2022.104090
  9. Verestek, W., Kaiser, J., Bonten, C., & Schmauder, S. (2023). Molecular dynamics investigations on the influence of solutes on the tensile behavior of Polyamide6. In High Performance Computing in Science and Engineering \textquotesingle21 (S. 81--95). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_5
  10. Abdessaied, A., Sood, E., & Bulling, A. (2022). Video Language Co-Attention with Multimodal Fast-Learning Feature Fusion for VideoQA. Proceedings of the 7th Workshop on Representation Learning for NLP, 143–155. https://doi.org/10.18653/v1/2022.repl4nlp-1.15
  11. Arad, A., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., Weigand, B., & Katoshevski, D. (2022). CFD Simulations of Droplet Grouping in Acoustic Standing Waves. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
  12. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Linear Tracking MPC for Nonlinear Systems : Part II: The Data-Driven Case. IEEE Transactions on Automatic Control, 67(9), 4406–4421. https://doi.org/10.1109/TAC.2022.3166851
  13. Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2022). Linear Tracking MPC for Nonlinear Systems Part I : The Model-Based Case. IEEE Transactions on Automatic Control, 67(9), 4390–4405. https://doi.org/10.1109/TAC.2022.3166872
  14. Blankenhorn, N. (2022). Untersuchung von Finite-Elemente-Simulationsansätzen auf Basis der klassischen Laminattheorie für die strukturmechanische Analyse von additiv-gefertigten FFF-Bauteilen (U. Stuttgart, Hrsg.).
  15. Borrmann, F., Tsuda, T., Guskova, O., Kiriy, N., Hoffmann, C., Neusser, D., Ludwigs, S., Lappan, U., Simon, F., Geisler, M., Debnath, B., Krupskaya, Y., Al-Hussein, M., & Kiriy, A. (2022). Charge-Compensated N-Doped π-Conjugated Polymers : Toward both Thermodynamic Stability of N-Doped States in Water and High Electron Conductivity. Advanced Science, 9(31), 2203530. https://doi.org/10.1002/advs.202203530
  16. Braun, S. (2022). Entwicklung eines Slicers zur Herstellung additiv gefertigter FFF-Bauteile (U. Stuttgart, Hrsg.).
  17. Ceron, T., Blokker, N., & Padó, S. (2022). Optimizing text representations to capture (dis)similarity between political parties. Proceedings of CoNLL, 325--338. https://aclanthology.org/2022.conll-1.22
  18. Cressa, L., Fell, J., Pauly, C., Hoang, Q. H., Mücklich, F., Herrmann, H.-G., Wirtz, T., & Eswara, S. (2022). A FIB-SEM Based Correlative Methodology for X-Ray Nanotomography and Secondary Ion Mass Spectrometry : An Application Example in Lithium Batteries Research. Microscopy and Microanalysis, 28(6), 1890–1895. https://doi.org/10.1017/S1431927622012405
  19. Ebrahimi, A., Mager, M., Oncevay, A., Chaudhary, V., Chiruzzo, L., Fan, A., Ortega, J. E., Ramos, R., Rios, A., Meza-Ruiz, I., Giménez-Lugo, G. A., Mager, E., Neubig, G., Palmer, A., Coto-Solano, R., Vu, N. T., & Kann, K. (2022). AmericasNLI : Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 1 : Long Papers, 6279–6299. https://doi.org/10.18653/v1/2022.acl-long.435
  20. Falk, N., & Lapesa, G. (2022). Reports of personal experiences and stories in argumentation : datasets and analysis. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 1 : Long Papers, 5530–5553. https://doi.org/10.18653/v1/2022.acl-long.379
  21. Gardumi, F., Keppo, I., Howells, M., Pye, S., Avgerinopoulos, G., Lekavičius, V., Galinis, A., Martišauskas, L., Fahl, U., Korkmaz, P., Schmid, D., Cunha Montenegro, R., Syri, S., Hast, A., Mörtberg, U., Balyk, O., Karlsson, K., Pang, X., Mozgeris, G., … Mikulić, M. (2022). Carrying out a multi-model integrated assessment of European energy transition pathways : Challenges and benefits. Energy, 258, 124329. https://doi.org/10.1016/j.energy.2022.124329
  22. Gashteovski, K., Yu, M., Kotnis, B., Lawrence, C., Niepert, M., & Glavas, G. (2022). BenchIE : A Framework for Multi-Faceted Fact-Based Open Information Extraction Evaluation. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 1 : Long Papers, 4472–4490. https://doi.org/10.18653/v1/2022.acl-long.307
  23. Guski, V., Verestek, W., & Schmauder, S. (2022). Microstructural simulations on CrAlN HPPMS coatings. Surface and Coatings Technology, 447, 128814. https://doi.org/10.1016/j.surfcoat.2022.128814
  24. Hartmann, V. N., Orthey, A., Driess, D., Oguz, O. S., & Toussaint, M. (2022). Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2022.3198020
  25. Holicki, T. (2022). A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems [University of Stuttgart]. https://doi.org/10.18419/opus-12158
  26. Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), 103–108. https://doi.org/10.1016/j.ifacol.2022.09.331
  27. Imani, R., Borca, C. H., Pazoki, M., & Edvinsson, T. (2022). Excited-state charge polarization and electronic structure of mixed-cation halide perovskites : the role of mixed inorganic-organic cations in CsFAPbI(3). RSC Advances, 12(39), 25415–25423. https://doi.org/10.1039/d2ra04513c
  28. Iserlohe, C., Vacca, W. D., Fischer, C., Fischer, N., & Krabbe, A. (2022). Probing the Atmospheric Precipitable Water Vapor with SOFIA, Part III : Atlas of Seasonal Median PWV Maps from ERA5, Implications for FIFI-LS and in situ Comparison Between the ERA5 and MERRA-2 Atmospheric Re-analyses. Publications of the Astronomical Society of the Pacific, 134(1038), 085001. https://doi.org/10.1088/1538-3873/ac82c5
  29. Jetz, W., Tertitski, G., Kays, R., Mueller, U., Wikelski, M., Akesson, S., Anisimov, Y., Antonov, A., Arnold, W., Bairlein, F., Balta, O., Baum, D., Beck, M., Belonovich, O., Belyaev, M., Berger, M., Berthold, P., Bittner, S., Blake, S., … Zook, C. (2022). Biological Earth observation with animal sensors : (Trends in Ecology and Evolution 37, 293-298; 2022). Trends in Ecology & Evolution, 37(8), 719–724. https://doi.org/10.1016/j.tree.2022.04.012
  30. Keller, J., Scagnetti, C., & Albrecht, S. (2022). The Relevance of Recyclability for the Life Cycle Assessment of Packaging Based on Design for Life Cycle. Sustainability, 14(7), 4076. https://doi.org/10.3390/su14074076
  31. Khlyzova, A., Silberer, C., & Klinger, R. (2022). On the Complementarity of Images and Text for the Expression of Emotions in Social Media. In J. Barnes, O. de Clercq, V. Barriere, S. Tafreshi, S. Alqahtani, J. Sedoc, R. Klinger, & A. Balahur (Hrsg.), Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (S. 1–15). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.wassa-1.1
  32. Klein, K., Sedlmair, M., & Schreiber, F. (2022). Immersive analytics : An overview. Information Technology, 64(4–5), 155–168. https://doi.org/10.1515/itit-2022-0037
  33. Knies, B., & Hartenbach, I. (2022). Oxygen out, sulfur in : The alkali metal sulfidotungstates K2WS4 and novel Na2WS44 dot H2O. Zeitschrift Für Anorganische Und Allgemeine Chemie, 648(23), e202200270. https://doi.org/10.1002/zaac.202200270
  34. Kocsis, D. (2022). Topologieoptimierung und Herstellung einer eVTOL Motorgondel mittels additiver Fertigungsverfahren (U. Stuttgart, Hrsg.).
  35. Kotnis, B., Gashteovski, K., Onoro-Rubio, D., Shaker, A., Rodriguez-Tembras, V., Takamoto, M., Niepert, M., & Lawrence, C. (2022). MILIE : Modular & Iterative Multilingual Open Information Extraction. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 1 : Long Papers, 6939–6950. https://doi.org/10.18653/v1/2022.acl-long.478
  36. Kreuter, A., Sassenberg, K., & Klinger, R. (2022). Items from Psychometric Tests as Training Data for Personality Profiling Models of Twitter Users. In J. Barnes, O. de Clercq, V. Barriere, S. Tafreshi, S. Alqahtani, J. Sedoc, R. Klinger, & A. Balahur (Hrsg.), Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (S. 315–323). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.wassa-1.35
  37. Lux, F., & Vu, N. T. (2022). Language-Agnostic Meta-Learning for Low-Resource Text-to-Speech with Articulatory Features. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 1 : Long Papers, 6858–6868. https://doi.org/10.18653/v1/2022.acl-long.472
  38. Mack, A., Maier, J., & Scheffknecht, G. (2022). Modification of a 240 kWth grate incineration system for oxyfuel combustion of wood chips. Journal of the Energy Institute, 104(October), 80–88. https://doi.org/10.1016/j.joei.2022.07.011
  39. Miehling, R. (2022). Entwicklung und Evaluierung eines Algorithmus zur Liniensegmentierung aus Punktwolken für Faserverbundsysteme. In Masterarbeit, Geodätisches Institut, Universität Stuttgart.
  40. Molpeceres, G., Kästner, J., Herrero, V. J., Peláez, R. J., & Maté, B. (2022). Desorption of organic molecules from interstellar ices, combining experiments and computer simulations : Acetaldehyde as a case study. Astronomy & Astrophysics, 664, A169. https://doi.org/10.1051/0004-6361/202243489
  41. Molpeceres, G., & Rivilla, V. M. (2022). Radical addition and H abstraction reactions in C2H2, C2H4, and C2H6 : A gateway for ethyl- and vinyl-bearing molecules in the interstellar medium. Astronomy & Astrophysics, 665, A27. https://doi.org/10.1051/0004-6361/202243892
  42. Ngo, Q. Q., Dennig, F. L., Keim, D. A., & Sedlmair, M. (2022). Machine learning meets visualization : Experiences and lessons learned. Information Technology, 64(4–5), 169–180. https://doi.org/10.1515/itit-2022-0034
  43. Niesen, S., Fox, A., Murugan, S., Richter, G., & Buchmeiser, M. R. (2022). Multifunctional Self-Cross-Linked Copolymer Binder for High-Loading Silicon Anodes. ACS Applied Energy Materials, 5(9), 11386–11391. https://doi.org/10.1021/acsaem.2c01867
  44. Petroff, M., Kulenovic, R., & Starflinger, J. (2022). Experimental Investigation on Debris Bed Quenching With Additional Non-Condensable Gas Injection. Journal of Nuclear Engineering and Radiation Science, 8(4), 041702. https://doi.org/10.1115/1.4051876
  45. Petzolt, S., Hölzle, K., Kullik, O., Gergeleit, W., & Radunski, A. (2022). Organisational Digital Transformation of SMEs : Development and Application of a Digital Transformation Maturity Model for Business Model Transformation. International Journal of Innovation Management, 26(03), 2240017. https://doi.org/10.1142/S1363919622400175
  46. Potyka, J., Stober, J., Wurst, J., Ibach, M., Steigerwald, J., Weigand, B., & Schulte, K. (2022). Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’22. Springer International Publishing. https://arxiv.org/abs/2212.09727
  47. Sabbatino, V., Troiano, E., Schweitzer, A., & Klinger, R. (2022). “splink” is happy and “phrouth” is scary : Emotion Intensity Analysis for Nonsense Words. In J. Barnes, O. de Clercq, V. Barriere, S. Tafreshi, S. Alqahtani, J. Sedoc, R. Klinger, & A. Balahur (Hrsg.), Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (S. 37–50). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.wassa-1.4
  48. Sahu, J. N., Karri, R. R., & Meikap, B. C. (2022). Adsorption of Cr(VI) Using a Hybrid Evolutionary Differential and Multivariable Quadratic Technique. Chemical Engineering & Technology, 45(10), 1884–1893. https://doi.org/10.1002/ceat.202200249
  49. Sauer, A., Asaadi, S., & Küch, F. (2022). Knowledge Distillation Meets Few-Shot Learning : An Approach for Few-Shot Intent Classification Within and Across Domains. In B. Liu, A. Papandelis, S. Ultes, A. Rastogi, Y.-N. Chen, G. Spithourakis, E. Nouri, & W. Shi (Hrsg.), Proceedings of the 4th Workshop on NLP for Conversational AI (S. 108–119). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.nlp4convai-1.10
  50. Scheer, D., Dreyer, M., Schmidt, M., Schmieder, L., & Arnold, A. (2022). The Integrated Policy Package Assessment approach : elaborating ex ante knowledge in the field of urban mobility. Energy, Sustainability and Society, 12(1), 36. https://doi.org/10.1186/s13705-022-00362-4
  51. Schmalfuß, J., Scheurer, E., Zhao, H., Karantzas, N., Bruhn, A., & Labate, D. (2022). Blind Image Inpainting with Sparse Directional Filter Dictionaries for Lightweight CNNs. Journal of Mathematical Imaging and Vision. https://doi.org/10.1007/s10851-022-01119-6
  52. Schulz, S., Brem, A., & Gladysz, B. (2022). Lead User Identification Through Twitter Using Micro-Blog Data : A Case Study In The Aviation Industry. International Journal of Innovation Management, 26(04), 2250027. https://doi.org/10.1142/S136391962250027X
  53. Shihab, E., Wagner, S., Gerosa, M. A., Wessel, M., & Cabot, J. (2022). The Present and Future of Bots in Software Engineering. IEEE Software, 39(5), 28–31. https://doi.org/10.1109/MS.2022.3176864
  54. Shishova, E., Panzer, F., Werz, M., & Eberhard, P. (2022). Reversible inter-particle bonding in SPH for improved simulation of friction stir welding. Computational Particle Mechanics. https://doi.org/10.1007/s40571-022-00510-9
  55. Sirin-Sariaslan, A., & Naumann, S. (2022). Chiral diboranes as catalysts for the stereoselective organopolymerization of epoxides. Chemical Science, 13(36), 10939–10943. https://doi.org/10.1039/d2sc03977j
  56. Slo, A., Bhowmik, S., & Rothermel, K. (2022). State-Aware Load Shedding From Input Event Streams in Complex Event Processing. IEEE Transactions on Big Data, 8(5), 1340–1357. https://doi.org/10.1109/TBDATA.2020.3047438
  57. Stone, K., Vasishth, S., & Malsburg, T. von der. (2022). Does entropy modulate the prediction of German long-distance verb particles? PLOS ONE, 17(8), e0267813. https://doi.org/10.1371/journal.pone.0267813
  58. Waldhauser, F., Boukabache, H., Perrin, D., & Dazer, M. (2022). Wavelet-based Noise Extraction for Anomaly Detection Applied to Safety-Critical Electronics at CERN. Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022). The 32nd European Safety and Reliability Conference, Dublin, Ireland. https://doi.org/10.3850/978-981-18-5183-4_S02-03-080-cd
  59. Wang, Y., Xu, C., Jahnke, T., Verestek, W., Schmauder, S., & Spatz, J. P. (2022). Microstructural Modeling and Simulation of a Carbon Black-Based Conductive Polymer─A Template for the Virtual Design of a Composite Material. ACS Omega, 7(33), 28820--28830. https://doi.org/10.1021/acsomega.2c01755
  60. Zamora-Reina, F. D., Bravo-Marquez, F., & Schlechtweg, D. (2022). LSCDiscovery : A shared task on semantic change discovery and detection in Spanish. In N. Tahmasebi, S. Montariol, A. Kutuzov, S. Hengchen, H. Dubossarsky, & L. Borin (Hrsg.), Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change (S. 149–164). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.lchange-1.16
  61. Zengler, N. (2022). Entwicklung und Erprobung einer Aktuatorik zur nachträglichen, automatisierten Kurzfaserinfiltration additiv gefertigter Bauteile (U. Stuttgart, Hrsg.).
  62. Zhang, G., Ren, J., Tang, H., Zhang, Z., & Cao, J. (2022). Magnetic field deflection in a 100 W Hall thruster with permanent magnets. Plasma Sources Science and Technology, 31(9), 095003. https://doi.org/10.1088/1361-6595/ac89a8
  63. Zhu, B., Jiang, J., Lu, B., Li, X., Jiang, X., Rauhut, G., & Zeng, X. (2022). Phosphenic isocyanate (O2PNCO) : gas-phase generation, characterization, and photodecomposition reactions. Chemical Communications, 58(76), 10703–10706. https://doi.org/10.1039/d2cc03178g
  64. Zinn, T., Narayanan, T., Kottapalli, S. N., Sachs, J., Sottmann, T., & Fischer, P. (2022). Emergent dynamics of light-induced active colloids probed by XPCS. New Journal of Physics, 24(September), 093007. https://doi.org/10.1088/1367-2630/ac8a66
  65. Özen, İ., Schneider, R., Buchmeiser, M. R., & Wang, X. (2022). Revisiting the sublimation printability of cellulose-based textiles in light of ever-increasing sustainability issues. Coloration Technology, 138(6), 581–589. https://doi.org/10.1111/cote.12639
  66. Ai, Q., Sterl, F., Zhang, H., Wang, J., & Gießen, H. (2021). Extraordinarily Strong Second Harmonic Generation Enhancement in Hybrid Plasmon-Fiber Cavity System. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572389
  67. Babushkin, I., Shi, L., Husakou, A., Melchert, O., Frank, B., Ji, Y., Wetzel, G., Demircan, A., Lienau, C., Gießen, H., Ivanov, M., Morgner, U., & Kovacev, M. (2021). Unidirectional electronic currents in asymmetric nanojunctions driven by strong optical fields. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572518
  68. Both, S., Gießen, H., & Weiss, T. (2021). Nanophotonic Chiral Sensing : How Does it Actually Work? 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571940
  69. Bremer, L., Weber, K., Fischbach, S., Thiele, S., Schmidt, M., Kaganskiy, A., Rodt, S., Herkommer, A., Sartison, M., Portalupi, S. L., Michler, P., Gießen, H., & Reitzenstein, S. (2021). Quantum Dot Single-Photon Emission Coupled into Single-Mode Fibers with 3D Printed Micro-Objectives. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572989
  70. Fischer, M., Riedel, O., & Lechler, A. (2021). Arithmetic Coding for Floating-Points and Elementary Mathematical Functions. 2021 5th International Conference on System Reliability and Safety (ICSRS), 270–275. https://doi.org/10.1109/ICSRS53853.2021.9660663
  71. Floess, M., Steinle, T., Gerhardt, I., & Gießen, H. (2021). Femtosecond Tunable Light Source with Variable Repetition Rate and Ultra-high Pulse Contrast Ratio. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572441
  72. Gehring, F., Prenzel, T. M., Graf, R., & Albrecht, S. (2021). Sustainability screening in the context of advanced material development for printed electronics. Matériaux & Techniques, 109(5–6), 505. https://doi.org/10.1051/mattech/2022013
  73. Gießen, H., Linnenbank, H., Steinle, T., Mörz, F., Floess, M., & Werner, F. (2021). Robust and rapidly tunable light source for SRS/CARS microscopy with extremely low-intensity noise. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572884
  74. Gießen, H., Davis, T., Meyer zu Heringdorf, F., Frank, B., Janoschka, D., & Dreher, P. (2021). Topological plasmonics: Ultrafast vector movies of plasmonic skyrmions on the nanoscale. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572358
  75. Guski, V., Verestek, W., Rapp, D., & Schmauder, S. (2021). Microstructural Investigation of Plasma Sprayed Ceramic Coatings Focusing on the Effect of the Splat Boundary for SOFC Sealing Applications Using Peridynamics. Theoretical and Applied Fracture Mechanics. https://doi.org/10.1016/j.tafmec.2021.102926
  76. Karl, P., Ubl, M., Hentschel, M., Flad, P., Farag, A., Yang, J.-W., Lu, Y.-J., & Gießen, H. (2021). Superconducting NbN plasmonic perfect absorbers for tunable single photon near- and mid-IR photodetection. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571218
  77. Karst, J., Ratzsch, J., Fu, J., Ubl, M., Pohl, T., Sterl, F., Malacrida, C., Wieland, M., Reineke, B., Zentgraf, T., Ludwigs, S., Hentschel, M., & Gießen, H. (2021). Electrically Switchable Metasurface for Beam Steering Using PEDOT Polymers. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571399
  78. Karst, J., Sterl, F., Linnenbank, H., Weiss, T., Hentschel, M., & Gießen, H. (2021). Watching In Situ the Hydrogen Diffusion Dynamics in Magnesium on the Nanoscale. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571364
  79. Kim, J., Jang, B., Gargiulo, J., Bürger, J., Zhao, J., Upendar, S., Weiss, T., Maier, S. A., & Schmidt, M. A. (2021). The Light Cage : Integrated on-Chip Spectroscopy Using a Nano-Printed Hollow Core Waveguide. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571724
  80. Käss, M. (2021). Experimentelle Charakterisierung von Materialkennwerten für additiv gefertigte FFF-Bauteile zur Grundlage einer Modellierung auf Basis der Klassischen Laminattheorie (U. Stuttgart, Hrsg.).
  81. Mäusezahl, M., Christaller, F., Vries, O. de, Plötner, M., Zhang, H., Belz, A., Heinrich, B., Walbaum, T., Schreiber, T., Tünnermann, A., Kübler, H., Löw, R., & Pfau, T. (2021). Commissioning of a Highly Customized 1010 nm, ns-Pulsed, Yb-Doped Fiber Amplifier for On-Demand Single-Photon Generation. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572508
  82. Mörz, F., Steinle, T., Linnenbank, H., Steinmann, A., & Gießen, H. (2021). Alignment-Free Mid-IR Source Tunable From 5 to 20 mu m by Mixing Two Independently Tunable OPOs. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572472
  83. Müller, D. (2021). Aufbau einer flexiblen non-planaren Slicingstrategie zur Herstellung von additiv gefertigten FFF-Bauteilen (U. Stuttgart, Hrsg.).
  84. Pax, D. C. (2021). Weiterentwicklung und Validierung eines analytischen Modells zur Steifigkeitsvorhersage von additiv gefertigten FFF-Strukturen (U. Stuttgart, Hrsg.).
  85. Pfezer, D., Karst, J., Kühner, L., Hentschel, M., & Gießen, H. (2021). SEIRA Sensing of Different Sugars at Physiological Concentrations. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571279
  86. Salman, M., Verestek, W., & Schmauder, S. (2021). Atomistic-scale modeling of nano-clay-filled shape memory polymers. Computational Materials Science, 188, 110246. https://doi.org/10.1016/j.commatsci.2020.110246
  87. Schmid, M., Thiele, S., Herkommer, A., & Gießen, H. (2021). 3D Printed Hybrid Refractive/Diffractive Achromat and Apochromat for the Visible Wavelength Range. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9571732
  88. Taleb, M., Lingstadt, R., Hentschel, M., Mashhadi, S., Burghard, M., Gießen, H., Aken, P. A. van, & Talebi, N. (2021). Strong Exciton-Photon Interactions in the van der Waals Materials Probed by Electron Beams. 2021 Conference on Lasers and Electro-Optics (CLEO). 2021 Conference on Lasers and Electro-Optics (CLEO), Online. https://ieeexplore.ieee.org/document/9572781
  89. Weimer, J., Koch, D., Nitzsche, M., Haarer, J., & Kallfass, I. (2021). Thermal Topology Optimization for High Power Density Power Electronic Systems in Passively Cooled Housings. 2021 IEEE Design Methodologies Conference (DMC). 2021 IEEE Design Methodologies Conference (DMC), Online. https://doi.org/10.1109/DMC51747.2021.9529942
  90. Xu, X., Binkele, P., Verestek, W., & Schmauder, S. (2021). Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars. Molecules, 26(9), 2606. https://doi.org/10.3390/molecules26092606
  91. Yan, S., Verestek, W., Zeizinger, H., & Schmauder, S. (2021). Characterization of Cure Behavior in Epoxy Using Molecular Dynamics Simulation Compared with Dielectric Analysis and DSC. Polymers, 13(18), 3085. https://doi.org/10.3390/polym13183085
  92. Verestek, W., Prskalo, A.-P., Hummel, M., Binkele, P., & Schmauder, S. (2017). Molecular dynamics investigations of the strengthening of Al-Cu alloys during thermal ageing. Physical Mesomechanics, 20(3), 291--304. https://doi.org/10.1134/s1029959917030055
  93. Bos, U., & Albrecht, S. (2016). Nachhaltigkeitsbetrachtung biobasierter WertschÖpfungsketten. Chemie-Ingenieur-Technik, 88(9), Article 9.
  94. Gehring, F., Lindner, J. P., Brandstetter, C. P., Albrecht, S., & Leistner, P. (2016). Life Cycle Assessment of Selected Molecular Sorting Demonstrators | Ökologische Bewertung ausgewählter Molecular-Sorting-Demonstratoren. Chemie-Ingenieur-Technik, 88(4), 417–426.
  95. Lindner, J. P., Gehring, F., Albrecht, S., Krieg, H., & Leistner, P. (2016). Life Cycle Assessment of Recycling Processes During Development | Entwicklungsbegleitende Ökobilanzierung von Recyclingprozessen. Chemie-Ingenieur-Technik, 88(4), 409–416.
  96. Okita, S., Verestek, W., Sakane, S., Takaki, T., Ohno, M., & Shibuta, Y. (2016). Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system. Journal of Crystal Growth. https://doi.org/10.1016/j.jcrysgro.2016.11.120
  97. Wehner, D., Hohmann, A., Schwab, B., Albrecht, S., Ilg, R., Sedlbauer, K., Leistner, P., & Drechsler, K. (2016). Effect of different technological and energy supply related measures on the primary energy demand of CFRP production. ECCM 2016 - Proceeding of the 17th European Conference on Composite Materials.
  98. Albrecht, S., Brandstetter, P., Beck, T., Fullana-I-Palmer, P., Grönman, K., Baitz, M., Deimling, S., Sandilands, J., & Fischer, M. (2013). An extended life cycle analysis of packaging systems for fruit and vegetable transport in Europe. International Journal of Life Cycle Assessment, 18(8), 1549–1567.
  99. Albrecht, S., Baumann, M., Brandstetter, C. P., Horn, R., Krieg, H., Fischer, M., & Ilg, R. (2013). Environmental aspects of lightweight construction in mobility and manufacturing. Green Design, Materials and Manufacturing Processes - Proceedings of the 2nd International Conference on Sustainable Intelligent Manufacturing, SIM 2013, 185–190.
  100. Löwe, K., Albrecht, S., Fischer, M., & Wittstock, B. (2010). Smart models as intelligent assistants in building LCA. Proceedings: CESB 2010 Prague - Central Europe towards Sustainable Building „From Theory to Practice“, 1–4.

Best Practices

  1. Garbuglia, F., Saenen, B., Gaillard, V., & Engelhardt, C. (2021). D7.5 Good Practices in FAIR Competence Education. Zenodo. https://doi.org/10.5281/zenodo.5785253
  2. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  3. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53(10–11), Article 10–11. https://doi.org/10.1515/bd-2019-0098
  4. Austin, C. C., Bloom, T., Dallmeier-Tiessen, S., Khodiyar, V. K., Murphy, F., Nurnberger, A., Raymond, L., Stockhause, M., Tedds, J., Vardigan, M., & Whyte, A. (2017). Key components of data publishing: using current best practices to develop a reference model for data publishing. International Journal on Digital Libraries, 18(2), 77--92. https://doi.org/10.1007/s00799-016-0178-2
  5. Fehr, J., and Jan Heiland, Himpe, C., & Saak, J. (2016). Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software. AIMS Mathematics, 1(3), 261--281. https://doi.org/10.3934/math.2016.3.261

Beschreibung von Forschungsdaten

  1. Schembera, B., & Iglezakis, D. (o. J.). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In Metadata and Semantic Research. 12th International Conference, MTSR 2018, Limassol, Cyprus, 23-26 October 2018, Proceedings. Springer.
  2. Behr, A. S., Völkenrath, M., & Kockmann, N. (2023). Ontology Extension with NLP-based Concept Extraction for Domain Experts in Catalytic Sciences. https://doi.org/10.21203/rs.3.rs-2457909/v1
  3. Doorn, P., Steinhoff, W., Verburg, M., Grootveld, M., & Dillo, I. (2022). F-UJI and FAIR Enough tool comparison dataset (European Research Data Landscape study). Zenodo. https://doi.org/10.5281/ZENODO.7371409
  4. Hirsch, M., Iglezakis, D., Leymann, F., & Zimmermann, M. (2022). The ReSUS Project - Infrastructure for Sharing Research Software. In E-Science-Tage 2021: Share Your Research Data (S. 267–276). heiBOOKS. https://doi.org/10.11588/HEIBOOKS.979.C13737
  5. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  6. de Vries, J., Tykhonov, V., Scharnhorst, A., Indarto, E., & Admiraal, F. (2021). Flexible metadata schemes for research data repositories -  The Common Framework in Dataverse and the CMDI use case. In M. Monachini & M. Eskevich (Hrsg.), Proceedings of the CLARIN Annual Conference 2021 (S. 109–118).
  7. Horsch, M. T., Morgado, J. F., Goldbeck, G., Iglezakis, D., Konchakova, N. A., & Schembera, B. (2021). Domain-specific metadata standardization in materials modelling. Domain Ontologies for Research Data Management in Industry Commons of Materials and Manufacturing. https://openreview.net/forum?id=uYgdGd7_wgH
  8. Iglezakis, D., Fuhrmans, M., Arndt, S., Demandt, É., Hachinger, S., Hausen, D., Lanza, G., Lipp, J., Stotzka, R., & Terzijska, D. (2021). Interoperabilität von Metadaten innerhalb der NFDI: Konsortienübergreifender Metadaten-Workshop am 2./3. Juli 2020. Bausteine Forschungsdatenmanagement, 2, 124–135. https://doi.org/10.17192/bfdm.2021.2.8313
  9. Iglezakis, D., Fuhrmans, M., Arndt, S., Demandt, É., Hachinger, S., Hausen, D., Lanza, G., Lipp, J., Stotzka, R., & Terzijska, D. (2021). Interoperabilität von Metadaten innerhalb der NFDI: Konsortienübergreifender Metadaten-Workshop am 2./3. Juli 2020. Bausteine Forschungsdatenmanagement, 2, 124–135. https://doi.org/10.17192/bfdm.2021.2.8313
  10. Schembera, B. (2021). Like a rainbow in the dark: metadata annotation for HPC applications in the age of dark data. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03602-6
  11. Wu, M., Juty, N., Research Metadata Schemas WG, R., Collins, J., Duerr, R., Ridsdale, C., Shepherd, A., Verhey, C., & Jael Castro, L. (2021). Guidelines for publishing structured metadata on the web (R. D. Alliance, Hrsg.). https://www.rd-alliance.org/system/files/documents/Guidelines%20for%20publishing%20structured%20data_V3.0_20210615.pdf
  12. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1, 28–38. https://doi.org/10.17192/bfdm.2020.1.8085
  13. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1, 28–38. https://doi.org/10.17192/bfdm.2020.1.8085
  14. Hub, T. C. I. (Hrsg.). (2020). A survey of Top-Level Ontologies.
  15. Hugo, W., Le Franc, Y., Coen, G., Parland-von Essen, J., & Bonino, L. (2020). D2.5 FAIR Semantics Recommendations Second Iteration. https://doi.org/10.5281/ZENODO.4314321
  16. Kesper, A., Wenz, V., & Taentzer, G. (2020). Detecting Quality Problems in Research Data: A Model-Driven Approach. http://arxiv.org/abs/2007.11298
  17. Schembera, B., & Iglezakis, D. (2020). EngMeta - Metadata for Computational Engineering. International Journal of Metadata, Semantics and Ontologies, 14(1), 26–38. https://doi.org/10.1504/IJMSO.2020.107792
  18. Selent, B., Kraus, H., Hansen, N., Schembera, B., Seeland, A., & Iglezakis, D. (2020). Management of Research Data in Computational Fluid Dynamics and Thermodynamics. In V. Heuveline, F. Gebhart, & N. Mohammadianbisheh (Hrsg.), E-Science-Tage 2019: Data to Knowledge (S. 128–139). HeiBOOKS. https://doi.org/10.11588/heibooks.598
  19. Grunzke, R., Hartmann, V., Jejkal, T., Kollai, H., Prabhune, A., Herold, H., Deicke, A., Dressler, C., Dolhoff, J., Stanek, J., Hoffmann, A., Müller-Pfefferkorn, R., Schrade, T., Meinel, G., Herres-Pawlis, S., & Nagel, W. E. (2019). The MASi repository service — Comprehensive, metadata-driven and multi-community research data management. Future Generation Computer Systems, 94, 879–894. https://doi.org/10.1016/j.future.2017.12.023
  20. Horsch, M. T., Niethammer, C., Boccardo, G., Carbone, P., Chiacchiera, S., Chiricotto, M., Elliott, J. D., Lobaskin, V., Neumann, P., Schiffels, P., Seaton, M. A., Todorov, I. T., Vrabec, J., & Cavalcanti, W. L. (2019). Semantic Interoperability and Characterization of Data Provenance in Computational Molecular Engineering. Journal of Chemical & Engineering Data, 65(3), 1313--1329. https://doi.org/10.1021/acs.jced.9b00739
  21. Iglezakis, D., & Schembera, B. (2019). EngMeta - a Metadata Scheme for the Engineering Sciences. DaRUS. https://doi.org/10.18419/darus-500
  22. Iglezakis, D. (2019). Relevance of Different Metadata Fields for the Description of Research Data from the Engineering Sciences (DaRUS, Hrsg.). https://doi.org/10.18419/darus-501
  23. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  24. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Hrsg.), Metadata and Semantic Research (Nr. 846; Nummer 846, S. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  25. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Hrsg.), Metadata and Semantic Research (Nr. 846; Nummer 846, S. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  26. Selent, B., Schembera, B., Iglezakis, D., & Seeland, A. (2019). Datenmanagement in Infrastrukturen, Prozessen und Lebenszyklen für die Ingenieurwissenschaften : Abschlussbericht des BMBF-Projektes Dipl-Ing. Universität Stuttgart; https://doi.org/10.2314/KXP:1693393980
  27. Sprenger, J., Zehl, L., Pick, J., Sonntag, M., Grewe, J., Wachtler, T., Grün, S., & Denker, M. (2019). odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments. Ludwig-Maximilians-Universität München. https://epub.ub.uni-muenchen.de/69215/
  28. Balatsoukas, P., Rousidis, D., & Garoufallou, E. (2018). A method for examining metadata quality in open research datasets using the OAI-PMH and SQL queries: the case of the Dublin Core „Subject“ element and suggestions for user-centred metadata annotation design. IJMSO, 13(1), 1–8. http://dblp.uni-trier.de/db/journals/ijmso/ijmso13.html#BalatsoukasRG18
  29. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  30. Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12(2), Article 2. https://doi.org/10.2218/ijdc.v12i2.577
  31. Gärtner, M., Hahn, U., & Hermann, S. (2018). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Hrsg.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (S. 563--570). European Language Resources Association (ELRA).
  32. Gärtner, M., Hahn, U., & Hermann, S. (2018). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. C. (Conference chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Hrsg.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA).
  33. Group, D. M. W. (2017). DataCite Metadata Schema for the Publication and Citation of Research Data. Version 4.1. https://doi.org/10.5438/0015
  34. Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., & others. (2017). Ground: A Data Context Service. CIDR.
  35. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., Gil, Y. G., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., & Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  36. Schembera, B., & Bönisch, T. (2017). Challenges of Research Data Management for High Performance Computing. International Conference on Theory and Practice of Digital Libraries, 140--151. https://link.springer.com/chapter/10.1007/978-3-319-67008-9_12
  37. Stein, A., Applegate, K. J., & Robbins, S. (2017). Achieving and Maintaining Metadata Quality: Toward a Sustainable Workflow for the IDEALS Institutional Repository. Cataloging & Classification Quarterly, 55(7–8), 644–666. https://doi.org/10.1080/01639374.2017.1358786
  38. Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino da Silva Santos, L. O., & Dumontier, M. (2017). A design framework and exemplar metrics for FAIRness. bioRxiv. https://doi.org/10.1101/225490
  39. Kohwalter, T., Oliveira, T., Freire, J., Clua, E., & Murta, L. (2016). Prov Viewer: A Graph-Based Visualization Tool for Interactive Exploration of Provenance Data. In M. Mattoso & B. Glavic (Hrsg.), Provenance and Annotation of Data and Processes (S. 71--82). Springer International Publishing.
  40. Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated quality assessment of metadata across open data portals. Journal of Data and Information Quality (JDIQ), 8(1), 2.
  41. Pimentel, J. F., Freire, J., Braganholo, V., & Murta, L. (2016). Tracking and Analyzing the Evolution of Provenance from Scripts. In M. Mattoso & B. Glavic (Hrsg.), Provenance and Annotation of Data and Processes (S. 16--28). Springer International Publishing.
  42. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/10.1016/j.commatsci.2015.09.013
  43. Schreiber, A. (2016). Standardisierung eines erweiterbaren Modells für Provenance-Daten (PROV-SPEC) (Nr. 2016–04). 2016–04, Article 2016–04.
  44. Wu, K., Coviello, E. N., Flanagan, S. M., Greenwald, M., Lee, X., Romosan, A., Schissel, D. P., Shoshani, A., Stillerman, J., & Wright, J. (2016). MPO: A System to Document and Analyze Distributed Heterogeneous Workflows. In M. Mattoso & B. Glavic (Hrsg.), Provenance and Annotation of Data and Processes (S. 166--170). Springer International Publishing.
  45. Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  46. Belhajjame, K., Zhao, J., Garijo, D., Gable, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the World Wide Web, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  47. Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14(0), 2. https://doi.org/10.5334/dsj-2015-002
  48. Chao, T. (2015). Mapping Methods Metadata for Research Data. International Journal of Digital Curation, 10(1), Article 1. https://doi.org/10.2218/ijdc.v10i1.347
  49. Moreau, L., Groth, P., Cheney, J., Lebo, T., & Miles, S. (2015). The rationale of PROV. Web Semantics: Science, Services and Agents on the World Wide Web, 35(4), 235–257. https://doi.org/10.1016/j.websem.2015.04.001
  50. Rasaiah, B. A., Jones, S. D., Bellman, C., Malthus, T. J., & Hueni, A. (2015). Assessing Field Spectroscopy Metadata Quality. Remote Sensing, 7(4), 4499–4526. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahJBMH15
  51. Rasaiah, B. A., Bellman, C., Jones, S. D., Malthus, T. J., & Roelfsema, C. M. (2015). Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sensing, 7(11), 15668–15701. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahBJMR15
  52. Starr, J., Castro, E., Crosas, M., Dumontier, M., Downs, R. R., Duerr, R., Haak, L. L., Haendel, M., Herman, I., Hodson, S., Hourclé, J., Kratz, J. E., Lin, J., Nielsen, L. H., Nurnberger, A., Proell, S., Rauber, A., Sacchi, S., Smith, A., … Clark, T. (2015). Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.1
  53. Amorim, R., Aguiar Castro, J., Rocha, J., & Ribeiro, C. (2014). LabTablet: Semantic Metadata Collection on a Multi-domain Laboratory Notebook. Communications in Computer and Information Science, 478, 193–205. https://doi.org/10.1007/978-3-319-13674-5_19
  54. Brauer, P., Czerniak, A., & Hasselbring, W. (2014). Start Smart and Finish Wise: The Kiel Marine Science Provenance-Aware Data Management Approach. In A. Chapman, B. Ludäscher, & A. Schreiber (Hrsg.), TAPP. USENIX Association. http://dblp.uni-trier.de/db/conf/tapp/tapp2014.html#BrauerCH14
  55. Farnel, S., & Shiri, A. (2014). Metadata for Research Data: Current Practices and Trends. In W. E. Moen & A. Rushing (Hrsg.), Dublin Core Conference (S. 74–82). Dublin Core Metadata Initiative. http://dblp.uni-trier.de/db/conf/dc/dc2014.html#FarnelS14
  56. Grunzke, R., Hesser, J., Starek, J., Kepper, N., Gesing, S., Hardt, M., Hartmann, V., Kindermann, S., Potthoff, J., Hausmann, M., Müller-Pfefferkorn, R., & Jäkel, R. (2014). Device-Driven Metadata Management Solutions for Scientific Big Data Use Cases. 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 317–321.
  57. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M., & Krüger, J. (2014). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744--1759. https://doi.org/10.1002/cpe.3116
  58. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M. P., & Krüger, J. (2014). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744–1759. http://dblp.uni-trier.de/db/journals/concurrency/concurrency26.html#GrunzkeBGHKBGPSSSSSMJNA014
  59. Malik, T. (2014). Geobase: Indexing NetCDF Files for large-scale Data Analysis. In Big Data Management, Technologies, and Applications (S. 295--313). IGI Global. https://doi.org/10.4018/978-1-4666-4699-5.ch012
  60. Rousidis, D., Sicilia, M.-Á., Garoufallou, E., & Balatsoukas, P. (2014). Data Quality Issues and Content Analysis for Research Data Repositories : The Case of Dryad. In P. Polydoratou & M. Dobreva (Hrsg.), ELPUB (S. 49–58). IOS Press. http://dblp.uni-trier.de/db/conf/elpub/elpub2014.html#RousidisSGB14
  61. Rousidis, D., Garoufallou, E., Balatsoukas, P., & Sicilia, M.-Á. (2014). Metadata for Big Data: A preliminary investigation of metadata quality issues in research data repositories. Inf. Services and Use, 34(3–4), 279–286. http://dblp.uni-trier.de/db/journals/isu/isu34.html#RousidisGBS14
  62. Tran, H. D., Holt, J., Goodrich, R. W., Mader, J. A., Swain, M., Laity, A. C., Kong, M., Gelino, C. R., & Berriman, G. B. (2014). Metadata and Data Management for the Keck Observatory Archive. https://doi.org/10.1117/12.2054830
  63. Bechhofer, S., Buchan, I., de Roure, D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., & Goble, C. (2013). Why linked data is not enough for scientists. Future Generation Computer Systems, 29(2), 599–611. https://doi.org/10.1016/j.future.2011.08.004
  64. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., & Zhao, J. (2013). PROV-O: The PROV Ontology. https://www.w3.org/TR/prov-o/
  65. Sahoo, S., Lebo, T., & McGuinness, D. (2013). PROV-O: The PROV Ontology [W3C Recommendation]. W3C.
  66. Grewe, J., Wachtler, T., & Benda, J. (2011). A Bottom-up Approach to Data Annotation in Neurophysiology. Frontiers in Neuroinformatics, 5. https://doi.org/10.3389/fninf.2011.00016
  67. Han, J., Miller, J. A., & Silver, G. A. (2011). SoPT: Ontology for simulation optimization for scientific experiments. Proceedings of the 2011 Winter Simulation Conference (WSC), 2909–2920. https://doi.org/10.1109/WSC.2011.6147994
  68. Murray-Rust, P., & Rzepa, H. S. (2011). CML: Evolution and design. J. Cheminformatics, 3, 44. http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf3.html#Murray-RustR11
  69. Murray-Rust, P., Townsend, J., Adams, S. E., Phadungsukanan, W., & Thomas, J. (2011). The semantics of Chemical Markup Language (CML): dictionaries and conventions. J. Cheminformatics, 3, 43. http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf3.html#Murray-RustTAPT11
  70. Haslhofer, B., & Klas, W. (2010). A survey of techniques for achieving metadata interoperability. ACM Comput. Surv., 42(2), 7:1-7:37. https://doi.org/10.1145/1667062.1667064
  71. Park, J.-R., & Tosaka, Y. (2010). Metadata Quality Control in Digital Repositories and Collections: Criteria, Semantics, and Mechanisms. Cataloging & Classification Quarterly, 48(8), 696–715. https://doi.org/10.1080/01639374.2010.508711
  72. Park, J.-R. (2009). Metadata Quality in Digital Repositories: A Survey of the Current State of the Art. Cataloging & Classification Quarterly, 47(3–4), 213–228. https://doi.org/10.1080/01639370902737240
  73. Hillmann, D. I. (2008). Metadata Quality: From Evaluation to Augmentation. Cataloging & Classification Quarterly, 46(1), 65–80. https://doi.org/10.1080/01639370802183008
  74. Vardigan, M., Heus, P., & Thomas, W. (2008). Data Documentation Initiative: Toward a Standard for the Social Sciences. IJDC, 3(1), 107–113. https://doi.org/10.2218/ijdc.v3i1.45
  75. Bruce, T. R., & Hillmann, D. I. (2004). The Continuum of Metadata Quality: Defning, Expression, Exploiting: Bd. Metadata in Practice. ALA Editions.
  76. Lautenschlager, M., Toussaint, F., Thiemann, H., & Reinke, M. (1998). The CERA-2 data model. https://www.pik-potsdam.de/cera/Descriptions/Publications/Papers/9807_DKRZ_TechRep15/cera2.pdf

Anforderungen der Forschungsförderer, politische Entwicklung

  1. für Bildung und Forschung (BMBF), B. (Hrsg.). (2016). Open Access in Deutschland. https://www.bmbf.de/pub/Open_Access_in_Deutschland.pdf

Kontakt

 

FoKUS – Kompetenzzentrum für Forschungsdaten

Zum Seitenanfang