Literatur

Sie wollen tiefer einsteigen? Aktuelle Literaturempfehlungen zum Thema Forschungsdatenmanagement.

Rechtliche Fragestellungen

  1. Kubis, M., Naczinsky, M., Selzer, A., Sperlich, T., Steiner, S., & Waldmann, U. (2019). Der digitale nachlass - Eine Untersuchung aus rechtlicher und technischer Sicht (F.-I. für Sichere Informationstechnologie, U. Bremen/IGMR, & U. Regensburg, Eds.). https://doi.org/10.24406/sit-n-572149
  2. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53(10–11), Article 10–11. https://doi.org/10.1515/bd-2019-0098
  3. Kreutzer, T., & Lahmann, H. (2019). Rechtsfragen bei Open Science. Hamburg University Press. https://doi.org/10.15460/HUP.195
  4. Johannes, P. C., Potthoff, J., Roßnagel, A., Neumair, B., Madiesh, M., & Hackel, S. (2013). Beweissicheres elektronisches Laborbuch (Nomos, Ed.).
  5. Meyermann, A., & Porzelt, M. (2014). Hinweise zur Anonymisierung von qualitativen Daten. Forschungsdaten Bildung Informiert, 1, Article 1. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-1.pdf
  6. Ebel, T., & Meyermann, A. (2015). Hinweise zur Anonymisierung von quantitativen Daten. Forschungsdaten Bildung Informiert, 3, Article 3. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-3.pdf
  7. Volkmann, S., Feiten, L., Zimmermann, C., Sester, S., Wehle, L., & Becker, B. (2016). Digitale Tarnkappe: Anonymisierung in Videoaufnahmen. In H. C. Mayr & M. Pinzger (Eds.), GI-Jahrestagung: Vol. P-259 (pp. 413–426). GI. http://dblp.uni-trier.de/db/conf/gi/gi2016.html#VolkmannFZSWB16
  8. Klimpel, P. (2018). Mehr als Materialbewahrung Über die Bedeutung von Rechteinformationen und Lizenzierung in Bibliotheken. Lizenzangaben Und Rechtedokumentationen Im Dialog – Datenflüsse Nachhaltig Gestalten.
  9. Nationalbibliothek, D. (Ed.). (2018). Lizenzangaben und Rechtedokumentationen im Dialog - Datenflüsse nachhaltig gestalten.
  10. Hannover, L. U., & Informationsbibliothek, T. (2018). FAQs Zu Rechtlichen Aspekten Im Umgang Mit Forschungsdaten. https://doi.org/10.5281/zenodo.1173546
  11. Lauber‐Rönsberg, A., Krahn, P., & Baumann, P. (2018). Gutachten zu den rechtlichen Rahmenbedingungen des Forschungsdatenmanagements. https://tu-dresden.de/gsw/jura/igewem/jfbimd13/ressourcen/dateien/publikationen/DataJus_Zusammenfassung_Gutachten_12-07-18.pdf?lang=de
  12. Stietenroth, D., Nieschulze, J., & Arend, K. (2005). Rechtliche Aspekte und Umsetzung des Datenmanagement in internationalen interdisziplinären Forschungsprojekten. Zeitschrift Für Agrarinformatik, 3, 64–75. http://www.gil.de/publications/zai/archiv/11_3_2005.pdf
  13. Guibault, L., & Wiebe, A. (2013). Safe to be open. Study on the protection of research data and recommendations für access and usage. Universitätsverlag Göttingen.

Forschungssoftware

  1. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020a). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  2. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., … Weeber, R. (2020b). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  3. Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., Martinez-Ortiz, C., der Velden, Y. T., & van Werkhoven, B. (2019). Raising the Profile of Research Software: Recommendations for Funding Agencies and Research Institutions (NWO, Ed.).
  4. Ballhausen, M. (2019). Free and Open Source Software Licenses Explained. IEEE Computer, 52(6), 82–86. http://dblp.uni-trier.de/db/journals/computer/computer52.html#Ballhausen19
  5. Erdmann, C., Simons, N., Otsuji, R., Labou, S., Johnson, R., Castelao, G., Boas, B. V., Lamprecht, A.-L., Ortiz, C. M., Garcia, L., Kuzak, M., Martinez, P. A., Stokes, L., Honeyman, T., Wise, S., Quan, J., Peterson, S., Neeser, A., Karvovskaya, L., … Dennis, T. (2019). Top 10 FAIR Data & Software Things. https://doi.org/10.5281/zenodo.2555498
  6. Gomez-Diaz, T., & Recio, T. (2019). On the evaluation of research software: the CDUR procedure. F1000Research, 8, 1353. https://doi.org/10.12688/f1000research.19994.2
  7. Gärtner, M. (2019). RePlay-DH Client v1.3.0. https://doi.org/10.18419/darus-475
  8. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2019). FAIR and Open Computer Science Research Software. In arXiv preprint arXiv:1908.05986. http://dblp.uni-trier.de/db/journals/corr/corr1908.html#abs-1908-05986
  9. Hermann, S., Iglezakis, D., & Seeland, A. (2019). Requirements for Finding Research Data and Software. PAMM. https://doi.org/10.1002/pamm.201900480
  10. Hsu, L., Hutchison, V. B., & Langseth, M. L. (2019). Measuring sustainability of seed-funded earth science informatics projects. PLOS ONE, 14(10), 1–25. https://doi.org/10.1371/journal.pone.0222807
  11. Johanson, A. N., & Hasselbring, W. (2019). Software Engineering for Computational Science. In S. Becker, I. Bogicevic, G. Herzwurm, & S. Wagner (Eds.), SE/SWM: Vol. P-292 (pp. 43–44). GI. http://dblp.uni-trier.de/db/conf/se/se2019.html#JohansonH19
  12. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1--23. https://doi.org/10.3233/ds-190026
  13. Li, K., Chen, P.-Y., & Yan, E. (2019). Challenges of measuring software impact through citations: An examination of the lme4 R package. Journal of Informetrics, 13(1), 449--461. https://doi.org/10.1016/j.joi.2019.02.007
  14. Scheliga, K., Pampel, H., Konrad, U., Fritzsch, B., Schlauch, T., Nolden, M., Zu Castell, W., Finke, A., Hammitzsch, M., Bertuch, O., & Denker, M. (2019). Dealing with research software: Recommendations for best practices. https://doi.org/10.2312/OS.HELMHOLTZ.003
  15. Siepel, A. (2019). Challenges in funding and developing genomic software: roots and remedies. Genome Biology, 20(1), 147--. https://doi.org/10.1186/s13059-019-1763-7
  16. Task Group Forschungssoftware Des Arbeitskreises Open Science Der Helmholtz-Gemeinschaft. (2019). Muster-Richtlinie Nachhaltige Forschungssoftware an den Helmholtz-Zentren. https://doi.org/10.2312/OS.HELMHOLTZ.007
  17. van de Sandt, S., Nielsen, L. H., Ioannidis, A., Muench, A., Henneken, E. A., Accomazzi, A., Bigarella, C., Lopez, J. B. G., & Dallmeier-Tiessen, S. (2019). Practice meets Principle: Tracking Software and Data Citations to Zenodo DOIs. CoRR, abs/1911.00295. http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-00295
  18. VSNU, K., NFU (Ed.). (2019). Room for everyone’s talent.
  19. Brown, C., Hong, N. C., & Jackson, M. (2018a). Software Deposit and Preservation Policy and                    Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  20. Brown, C., Hong, N. C., & Jackson, M. (2018b). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  21. Gundersen, O. E., & Kjensmo, S. (2018). State of the Art: Reproducibility in Artificial Intelligence. In S. McIlraith & K. Weinberger (Eds.), Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18). Association for the Advancement of Artificial Intelligence.
  22. Gärtner, M., Hahn, U., & Hermann, S. (2018a). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age (pp. 284–291). Springer International Publishing.
  23. Gärtner, M., Hahn, U., & Hermann, S. (2018b). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age (pp. 284–291). Springer International Publishing.
  24. Gärtner, M., Hahn, U., & Hermann, S. (2018c). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age: 27th International Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings (pp. 284--291). Springer International Publishing. https://doi.org/10.1007/978-3-319-73706-5_24
  25. Gärtner, M., Hahn, U., & Hermann, S. (2018d). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age: 27th International Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings (pp. 284--291). Springer International Publishing. https://doi.org/10.1007/978-3-319-73706-5_24
  26. Hallé, S., Khoury, R., & Awesso, M. (2018). Streamlining the Inclusion of Computer Experiments In a Research Paper. IEEE Computer, 51(11), 78–89. http://dblp.uni-trier.de/db/journals/computer/computer51.html#HalleKA18
  27. Hermann, S., Hahn, U., Gärtner, M., & Fritze, F. (2018). Nachträglich ist nicht gleich nachnutzbar: Ansätze für integrierte Prozessdokumentation im Forschungsalltag: 32-45 Seiten / o-bib. Das offene Bibliotheksjournal / herausgegeben vom VDB, Bd. 5 Nr. 3 (2018). https://doi.org/10.5282/O-BIB/2018H3S32-45
  28. Katerbow, M., & Feulner, G. (2018a). Handreichung Zum Umgang Mit Forschungssoftware. Zenodo. https://doi.org/10.5281/zenodo.1172970
  29. Katerbow, M., & Feulner, G. (2018b). Handreichung Zum Umgang Mit Forschungssoftware. Zenodo. https://doi.org/10.5281/zenodo.1172970
  30. Lee, B. D. (2018). Ten simple rules for documenting scientific software. PLOS Computational Biology, 14(12), e1006561. https://doi.org/10.1371/journal.pcbi.1006561
  31. no author. (15.02.2018). Choose an open source license | Choose a License. https://choosealicense.com/
  32. Russell, P. H., Johnson, R. L., Ananthan, S., Harnke, B., & Carlson, N. E. (2018). A large-scale analysis of bioinformatics code on GitHub. PLOS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205898
  33. Rüde, U., Willcox, K., McInnes, L. C., & Sterck, H. D. (2018). Research and Education in Computational Science and Engineering. SIAM Review, 60(3), 707–754. http://dblp.uni-trier.de/db/journals/siamrev/siamrev60.html#RudeWMS18
  34. Schlauch, T., Meinel, M., & Haupt, C. (2018). DLR Software Engineering Guidelines. https://doi.org/10.5281/zenodo.1344612
  35. Allen, A., Aragon, C. R., Becker, C., Carver, J., Chis, A., Combemale, B., Croucher, M., Crowston, K., Garijo, D., Gehani, A., Goble, C. A., Haines, R., Hirschfeld, R., Howison, J., Huff, K. D., Jay, C., Katz, D. S., Kirchner, C., Kuksenok, K., … Vinju, J. J. (2017). Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). Dagstuhl Manifestos, 6(1), 1–20. http://dblp.uni-trier.de/db/journals/dagstuhl-manifestos/dagstuhl-manifestos6.html#AllenABCCCCCGGG17
  36. Atkinson, M., Gesing, S., Montagnat, J., & Taylor, I. (2017). Scientific workflows: Past, present and future. Future Generation Computer Systems, 75, 216–227. https://doi.org/10.1016/j.future.2017.05.041
  37. Bar-Sinai, M., & Dunlap, M. (2017). The Open Monolith - Keeping Your Codebase (and Your Headaches) Small (JavaOne, Ed.).
  38. Childers, B. R., & Chrysanthis, P. K. (2017). Artifact Evaluation: Is It a Real Incentive? 2017 IEEE 13th International Conference on E-Science (e-Science), 488–489. https://doi.org/10.1109/eScience.2017.79
  39. Cosmo, R. D., & Zacchiroli, S. (2017). Software Heritage: Why and How to Preserve Software Source Code. IPRES 2017 - 14th International Conference on Digital Preservation, 1–10. https://hal.archives-ouvertes.fr/hal-01590958/
  40. da Silva, R. F., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., & Deelman, E. (2017). A characterization of workflow management systems for extreme-scale applications. Future Generation Computer Systems, 75, 228–238. https://doi.org/10.1016/j.future.2017.02.026
  41. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017a). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. In E-Science-Tage 2017: Forschungsdaten managen. http://archiv.ub.uni-heidelberg.de/volltextserver/22886/
  42. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017b). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. E-Science-Tage 2017: Forschungsdaten managen. E-Science-Tage 2017, Heidelberg. https://doi.org/10.11588/heidok.00022886
  43. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017c). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. E-Science-Tage 2017: Forschungsdaten managen. E-Science-Tage 2017, Heidelberg. https://doi.org/10.11588/heidok.00022886
  44. Hahn, U., Hermann, S., Enderle, P., Fritze, F., Gärtner, M., & Kushnarenko, V. (2017d). RePlay-DH - Realisierung einer Plattform und begleitender Dienste zum Forschungsdatenmanagement für die Fachcommunity - Digital Humanities. In E-Science-Tage 2017: Forschungsdaten managen. http://archiv.ub.uni-heidelberg.de/volltextserver/22886/
  45. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., Gil, Y. G., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., & Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  46. Levin, N., & Leonelli, S. (2017). How Does One “Open” Science? Questions of Value in Biological Research. Science, Technology, & Human Values, 42(2), 280–305. https://doi.org/10.1177/0162243916672071
  47. Software Source Code IG (Ed.). (2017a). Software Source Code IG. https://www.rd-alliance.org/groups/software-source-code-ig
  48. Software Source Code IG (Ed.). (2017b). Software Source Code IG. https://www.rd-alliance.org/groups/software-source-code-ig
  49. Wilson, Greg, Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough practices in scientific computing. PLOS Computational Biology, 13(6), 1–20. https://doi.org/10.1371/journal.pcbi.1005510
  50. zu und Nachnutzung von wissenschaftlicher Software“, T. G. „Zugang. (2017). Empfehlungen zur Implementierung von Leit- und Richtlinien zum Umgang mit wissenschaftlicher Software an den Helmholtz-Zentren (A. O. S. der Helmholtz-Gemeinschaft, Ed.). Helmholtz Gemeinschaft. https://os.helmholtz.de/open-science-in-der-helmholtz-gemeinschaft/akteure-und-ihre-rollen/arbeitskreis-open-science/empfehlungen-zur-implementierung-von-leit-und-richtlinien-zum-umgang-mit-wissenschaftlicher-software-an-den-helmholtz-zentren/
  51. Boisvert, R. F. (2016). Incentivizing reproducibility. Communications of the ACM, 59(10), 5--5. https://doi.org/10.1145/2994031
  52. Borgman, C. L., Golshan, M. S., Sands, A. E., Wallis, J. C., Cummings, R. L., Darch, P. T., & Randles, B. M. (2016). Data Management in the Long Tail: Science, Software, and Service. IJDC, 11(1), 128–149. https://doi.org/10.2218/ijdc.v11i1.428
  53. Burgess, L. C., Crotty, D., de Roure, D., Gibbons, J., Goble, C., Missier, P., Mortier, R., Nichols, T. E., & O’Beirne, R. (2016). ALAN TURING INSTITUTE SYMPOSIUM ON REPRODUCIBILITY FOR DATA-INTENSIVE RESEARCH--FINAL REPORT.
  54. Collberg, C., & Proebsting, T. A. (2016). Repeatability in Computer Systems Research. Commun. ACM, 59(3), 62--69. https://doi.org/10.1145/2812803
  55. Katz, D. S., Niemeyer, K. E., Smith, A. M., Anderson, W. L., Boettiger, C., Hinsen, K., Hooft, R., Hucka, M., Lee, A., Löffler, F., Pollard, T., & Rios, F. (2016). Software vs. data in the context of citation. PeerJ Preprints, 4, e2630v1. https://doi.org/10.7287/peerj.preprints.2630v1
  56. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/10.1016/j.commatsci.2015.09.013
  57. Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., Heroux, M. A., Ioannidis, J. P. A., & Taufer, M. (2016). Enhancing reproducibility for computational methods. Science, 354(6317), 1240–1241. https://doi.org/10.1126/science.aah6168
  58. Stodden, Victoria, McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., Heroux, M. A., Ioannidis, J. P. A., & Taufer, M. (2016). Enhancing reproducibility for computational methods. Science, 354(6317), 1240–1241. https://doi.org/10.1126/science.aah6168
  59. Van den Eynden, V., Knight, G., Vlad, A., Radler, B., Tenopir, C., Leon, D., Manista, F., Whitworth, J., & Corti, L. (2016). Survey of Wellcome researchers and their attitudes to open research (figshare, Ed.). https://doi.org/10.6084/m9.figshare.4055448.v1
  60. Ahalt, S., Carsey, T., Couch, A., Hooper, R., Ibanez, L., Idaszak, R., Jones, M. B., Lin, J., & Robinson, E. (2015). NSF Workshop on Supporting Scientific Discovery Through Norms and Practices for Software and Data Citation and Attribution. National Science Foundation.
  61. Allen, A., Berriman, G. B., DuPrie, K., Mink, J., Nemiroff, R., Robitaille, T., Shamir, L., Shortridge, K., Taylor, M., Teuben, P., & Wallin, J. (2015). Improving Software Citation and Credit. http://arxiv.org/abs/1512.07919
  62. Boettiger, C. (2015). An Introduction to Docker for Reproducible Research. SIGOPS Oper. Syst. Rev., 49(1), 71--79. https://doi.org/10.1145/2723872.2723882
  63. McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky, K., Cao, Y., Chirigati, F., Dey, S., Freire, J., Huntzinger, D., Jones, C., Koop, D., Missier, P., Schildhauer, M., Schwalm, C., Wei, Y., Cheney, J., Bieda, M., & Ludaescher, B. (2015). YesWorkflow: A User-Oriented, Language-Independent Tool for Recovering  Workflow Information from Scripts. http://arxiv.org/abs/1502.02403
  64. Corpas, M., Jimenez, R., Carbon, S. J., García, A., Garcia, L., Goldberg, T., Gomez, J., Kalderimis, A., Lewis, S. E., Mulvany, I., Pawlik, A., Rowland, F., Salazar, G., Schreiber, F., Sillitoe, I., Spooner, W. H., Thanki, A. S., Villaveces, J. M., Yachdav, G., & Hermjakobb, H. (2014). BioJS: an open source standard for biological visualisation – its status in 2014. F1000Research, 3(55), Article 55. https://doi.org/0.12688/f1000research.3-55.v1
  65. Goodman, A., Pepe, A., Blocker, A. W., Borgman, C. L., Cranmer, K., Crosas, M., Di Stefano, R., Gil, Y., Groth, P., Hedstrom, M., Hogg, D. W., Kashyap, V., Mahabal, A., Siemiginowska, A., & Slavkovic, A. (2014). 10 Simple Rules for the Care and Feeding of Scientific Data. https://doi.org/10.1371/journal.pcbi.1003542
  66. Hong, N. C. (2014). Minimal information for reusable scientific software. Proceedings of the 2nd Workshop on Working towards Sustainable Scientific Software: Practice and Experience.
  67. Peer, L., Green, A., & Stephenson, E. (2014). Committing to Data Quality Review. International Journal of Digital Curation, 9(1), 263--291. https://doi.org/10.2218/ijdc.v9i1.317
  68. Stodden, Victoria, & Miguez, S. (2014). Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research. Journal of Open Research Software, 2(1), Article 1. https://doi.org/10.5334/jors.ay
  69. Wilson, G, Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P. (2014). Best practices for scientific computing. PLoS Biol, 12(1), Article 1. https://doi.org/10.1371/journal.pbio.1001745
  70. Bangerth, W., & Heister, T. (2013). What makes computational open source software libraries successful? Computational Science & Discovery, 6(1), 015010. https://doi.org/10.1088/1749-4699/6/1/015010
  71. Castagné, M. (2013). Institutional repository software comparison: DSpace, EPrints, Digital Commons, Islandora and HydraR (p. 14288 / 1. 0075768). https://open.library.ubc.ca/cIRcle/collections/graduateresearch/42591/items/1.0075768
  72. Fomel, S., Sava, P., Vlad, I., Liu, Y., & Bashkardin, V. (2013). Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments. Journal of Open Research Software, 1(1), Article 1. https://doi.org/10.5334/jors.ag
  73. Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., Gavaghan, D., & Emmott, S. (2013). Troubling Trends in Scientific Software Use. Science, 340(6134), 814--815. https://doi.org/10.1126/science.1231535
  74. Pradal, C., Varoquaux, G., & Langtangen, H. P. (2013). Publishing scientific software matters. J. Comput. Science, 4(5), 311–312. https://doi.org/10.1016/j.jocs.2013.08.001
  75. Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1), 7. https://doi.org/10.1186/1751-0473-8-7
  76. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013a). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), 1–4. https://doi.org/10.1371/journal.pcbi.1003285
  77. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013b). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), 1–4. https://doi.org/10.1371/journal.pcbi.1003285
  78. Winn, J. (2013). Research Data Management using CKAN: A Datastore, Data Repository and Data Catalogue. IASSIST Conference. http://dblp.uni-trier.de/db/conf/iassist/iassist2013.html#Winn13
  79. Hanson, B., Sugden, A., & Alberts, B. (2011). Making Data Maximally Available. Science, 331(6018), 649. https://doi.org/10.1126/science.1203354
  80. Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J., Beard, S., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., Raman, A., Liu, F., & Walker, D. (2011). A survey of the practice of computational science. State of the Practice Reports on - SC \textquotesingle11. https://doi.org/10.1145/2063348.2063374
  81. Stodden, Victoria. (2010). The Scientific Method in Practice: Reproducibility in the Computational Sciences (M. S. R. P. No. -, Ed.; MIT Sloan Research Paper No. 4773-10; Issue MIT Sloan Research Paper No. 4773-10). https://doi.org/10.2139/ssrn.1550193
  82. Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems, 25(5), 528–540. https://doi.org/10.1016/j.future.2008.06.012
  83. Hannay, J. E., Langtangen, H. P., MacLeod, C., Pfahl, D., Singer, J., & Wilson, G. (2009). How do scientists develop and use scientific software? 1–8. https://doi.org/10.1109/SECSE.2009.5069155
  84. Roure, D. D., Goble, C., & Stevens, R. (2009). The design and realisation of the Experimentmy Virtual Research Environment for social sharing of workflows. Future Generation Computer Systems, 25(5), 561–567. https://doi.org/10.1016/j.future.2008.06.010
  85. Ackroyd, K. S., Kinder, S. H., Mant, G. R., Miller, M. C., Ramsdale, C. A., & Stephenson, P. C. (2008). Scientific Software Development at a Research Facility. IEEE Software, 25(4), 44–51. https://doi.org/10.1109/MS.2008.93
  86. Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L., Hollingsworth, J. K., Shull, F., & Zelkowitz, M. V. (2008). Understanding the High-Performance-Computing Community: A Software Engineer’s Perspective. IEEE Software, 25(4), 29–36. https://doi.org/10.1109/MS.2008.103
  87. Glass, R. L. (2008). Two Mistakes and Error-Free Software: A Confession. IEEE Software, 25(4), 96–96. https://doi.org/10.1109/MS.2008.102
  88. Hall, T., Sharp, H., Beecham, S., Baddoo, N., & Robinson, H. (2008). What Do We Know about Developer Motivation? IEEE Software, 25(4), 92–94. https://doi.org/10.1109/MS.2008.105
  89. Hatton, L. (2008). Testing the Value of Checklists in Code Inspections. IEEE Software, 25(4), 82–88. https://doi.org/10.1109/MS.2008.100
  90. Kendall, R., Carver, J. C., Fisher, D., Henderson, D., Mark, A., Post, D., Rhoades, C. E., & Squires, S. (2008). Development of a Weather Forecasting Code: A Case Study. IEEE Software, 25(4), 59–65. https://doi.org/10.1109/MS.2008.86
  91. McCullough, B. D., McGeary, K. A., & Harrison, T. D. (2008). Do Economics Journal Archives Promote Replicable Research? The Canadian Journal of Economics / Revue Canadienne d’Economique, 41(4), 1406–1420. http://www.jstor.org/stable/25478330
  92. Sanders, R., & Kelly, D. (2008). Dealing with Risk in Scientific Software Development. IEEE Software, 25(4), 21–28. https://doi.org/10.1109/MS.2008.84
  93. Sangwan, R. S., Vercellone-Smith, P., & Laplante, P. A. (2008). Structural Epochs in the Complexity of Software over Time. IEEE Software, 25(4), 66–73. https://doi.org/10.1109/MS.2008.96
  94. Segal, J., & Morris, C. (2008). Developing Scientific Software. IEEE Software, 25(4), 18–20. https://doi.org/10.1109/MS.2008.85
  95. Spinellis, D. (2008). The Way We Program. IEEE Software, 25(4), 89–91. https://doi.org/10.1109/MS.2008.101
  96. Vigder, M., Vinson, N. G., Singer, J., Stewart, D., & Mews, K. (2008). Supporting Scientists’ Everyday Work: Automating Scientific Workflows. IEEE Software, 25(4), 52–58. https://doi.org/10.1109/MS.2008.97
  97. Woollard, D., Medvidovic, N., Gil, Y., & Mattmann, C. (2008). Scientific Software as Workflows: From Discovery to Distribution. IEEE Software, 25(4), 37–43. https://doi.org/10.1109/MS.2008.92
  98. Wheeler, D. A. (2007). The Free-Libre / Open Source Software (FLOSS) License Slide.
  99. McGeary, K. A., McCullough, B. D., & Harrison, T. (2006). Lessons from the JMCB archive. Journal of Money Credit and Banking, 38(4), 1093–1107. https://doi.org/10.1353/mcb.2006.0061
  100. Crowder, H. P., Dembo, R. S., & Mulvey, J. M. (1979). On Reporting Computational Experiments with Mathematical Software. ACM Trans. Math. Softw., 5(2), 193–203. http://dblp.uni-trier.de/db/journals/toms/toms5.html#CrowderDM79

Befragungen

  1. Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/10.1016/j.coal.2020.103567
  2. Fischer, M., Bauer, G., & Gross, J. (2020). Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium Molecular Dynamic Simulations. Industrial & Engineering Chemistry Research, 59(18), 8855--8869.
  3. Fullstone, G., Bauer, T. L., Guttà, C., Salvucci, M., Prehn, J. H., & Rehm, M. (2020). The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death & Differentiation, 1--15.
  4. Fullstone, G., Guttà, C., Beyer, A., & Rehm, M. (2020). The FLAME-accelerated signalling tool (FaST) for facile parallelisation of flexible agent-based models of cell signalling. Npj Systems Biology and Applications, 6(1), 10--. https://doi.org/10.1038/s41540-020-0128-x
  5. Georgiou, Y., Zhou, N., Zhong, L., Hoppe, D., Pospieszny, M., Papadopoulou, N., Nikas, K., Nikolos, O. L., Kranas, P., Karagiorgou, S., Pascolo, E., Mercier, M., & Velho, P. (2020). Converging HPC, Big Data and Cloud technologies for precision agriculture data analytics on supercomputers. In 15th Workshop on Virtualization in High-Performance Cloud Computing (VHPC’20). International Supercomputing Conference - High Performance (ISC) 2020, Frankfurt, Germany. Springer LNCS.
  6. Gogolenko, S., Groen, D., Suleimenova, D., Mahmood, I., Lawenda, M., De Santos, F. J. N., Hanley, J., Vucković, M., Kröll, M., Geiger, B., & others. (2020). Towards Accurate Simulation of Global Challenges on Data Centers Infrastructures via Coupling of Models and Data Sources. International Conference on Computational Science, 410--424.
  7. Guttà, C., Rahman, A., Aura, C., Dynoodt, P., Charles, E. M., Hirschenhahn, E., Joseph, J., Wouters, J., de Chaumont, C., Rafferty, M., Warren, M., van den Oord, J. J., Gallagher, W. M., & Rehm, M. (2020). Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death & Disease, 11(2), Article 2. https://doi.org/10.1038/s41419-020-2309-3
  8. Hoppe, D., Zhong, L., Andersson, S., & Moise, D. (2020). On the Detection and Interpretation of Performance Variations of HPC Applications. In Sustained Simulation Performance 2018 and 2019 (pp. 41--56). Springer.
  9. Häufle, D. F. B., Wochner, I., Holzmüller, D., Drieß, D., Günther, M., & Schmitt, S. (2020). Muscles reduce neuronal information load : quantification of control effort in biological vs. robotic pointing and walking. Frontiers in Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
  10. Imig, D., Pollak, N., Allgöwer, F., & Rehm, M. (2020). Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis. PLOS Computational Biology, 16(6), 1–17. https://doi.org/10.1371/journal.pcbi.1007812
  11. Krause, T. (2020). Machine Learning basierte Response Style Identification : eine simulations-statistische Pilotstudie. In SISS: Schriftenreihe des Instituts für Sozialwissenschaften (No. 47; Issue 47). Universität Stuttgart - Institut für Sozialwissenschaften. https://doi.org/10.18419/opus-10874
  12. Nguyen, L. T. K., Rambausek, M., & Keip, M.-A. (2020). Variational framework for distance-minimizing method in data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 365, 112898. https://doi.org/10.1016/j.cma.2020.112898
  13. Pagel, J., Reiter, N., Rösiger, I., & Schulz, S. (2020). Annotation als flexibel einsetzbare Methode. In N. Reiter, A. Pichler, & J. Kuhn (Eds.), Reflektierte Algorithmische Textanalyse. Interdisziplinäre(s) Arbeiten in der CRETA-Werkstatt (pp. 125--142). De Gruyter. https://doi.org/10.1515/9783110693973-006
  14. Prechelt, L., Graziotin, D., & Mendez, D. (2020). Double-blind is good but open would be better. ACM SIGSOFT Software Engineering Notes, 45(3), 16--16. https://doi.org/10.1145/3402127.3402133
  15. Reiter, N., Kremer, G., Jung, K., Krautter, B., Pagel, J., & Pichler, A. (2020). Reaching out: Interdisziplinäre Kommunikation und Dissemination. In N. Reiter, A. Pichler, & J. Kuhn (Eds.), Reflektierte Algorithmische Textanalyse. Interdisziplinäre(s) Arbeiten in der CRETA-Werkstatt (pp. 467--484). De Gruyter. https://doi.org/10.1515/9783110693973-019
  16. Ruddat, M., & Mayer, V. (2020). Wie beteiligen? Die Sicht der Verwaltung auf kommunale Partizipationsprozesse anhand von Fallbeispielen in Herrenberg und Stuttgart. In Stuttgarter Beiträge zur Risiko- und Nachhaltigkeitsforschung (No. 38; Issue 38). ZIRIUS - Zentrum für Interdisziplinäre Risiko- und Innovationsforschung. https://doi.org/10.18419/opus-10839
  17. Scheer, D., Class, H., & Flemisch, B. (2020). Subsurface Environmental Modelling Between Science and Policy. Springer International Publishing. https://doi.org/10.1007/978-3-030-51178-4
  18. Schäuble, T., & Schenek, A. (2020). Digitalization - and then? New Developments in Sheet Metal Forming, 109–116.
  19. Senn, S., & Liewald, M. (2020). Increase of Cutting Surface Quality by geometrical Modification of the Punch Nose Radius. NEBU 2020, Stuttgart, Germany.
  20. Stöhr, D., Schmid, J. O., Beigl, T. B., Mack, A., Maichl, D. S., Cao, K., Budai, B., Fullstone, G., Kontermann, R. E., Mürdter, T. E., & others. (2020). Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death & Differentiation, 1--16.
  21. Stöhr, D., Jeltsch, A., & Rehm, M. (2020). TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. Cell Death Regulation in Health and Disease-Part A, 57.
  22. Verhagen, N., Teleki, A., Heinrich, C., Schilling, M., Unsoeld, A., & Takors, R. (2020). S-adenosylmethionine and methylthioadenosine boost cellular productivities of antibody forming Chinese hamster ovary cells. Biotechnol. Bioeng. https://doi.org/10.1002/bit.27484
  23. Vetma, V., Guttà, C., Peters, N., Praetorius, C., Hutt, M., Seifert, O., Meier, F., Kontermann, R., Kulms, D., & Rehm, M. (2020). Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death & Differentiation, 27(8), 2417--2432. https://doi.org/10.1038/s41418-020-0512-5
  24. von Arnim, C., Lechler, A., Riedel, O., & Verl, A. (2020). Fragmentation in Reconfigured Real-time Production Networks. Annals of Scientific Society for Assembly, Handling and Industrial Robotics, 105--115. https://doi.org/10.1007/978-3-662-61755-7_10
  25. Vural, H., Portalupi, S., & Michler, P. (2020). Perspective of self-assembled InGaAs quantum-dots for multi-source quantum implementations. Applied Physics Letters, 117(3), Article 3. https://doi.org/10.1063/5.0010782
  26. Walzer, S., & Liewald, M. (2020). Novel approach to decrease sheet thinning during sheet metal forming by using embossing technique, Metal Forming Krakau. Metal Forming 2020, Krakau, Polen.
  27. Wochner, I., Driess, D., Zimmermann, H., Haeufle, D. F., Toussaint, M., & Schmitt, S. (2020). Optimality principles in human point-to-manifold reaching accounting for muscle dynamics. Frontiers in Computational Neuroscience, 14, 38.
  28. Wochner, I., Drieß, D., Zimmermann, H., Haeufle, D. F. B., Toussaint, M., & Schmitt, S. (2020). Optimality principles in human point-to-manifold reaching accounting for muscle dynamics. Frontiers in Computational Neuroscience, 14, 38. https://doi.org/10.3389/fncom.2020.00038
  29. Bauer, T. L., Buchholz, P. C. F., & Pleiss, J. (2019). The modular structure of $\upalpha$/$\upbeta$-hydrolases. The FEBS Journal, 287(5), 1035--1053. https://doi.org/10.1111/febs.15071
  30. Baz, J., Held, C., Pleiss, J., & Hansen, N. (2019). Thermophysical properties of glyceline–water mixtures investigated by molecular modelling. Phys. Chem. Chem. Phys., 21(12), 6467–6476. https://doi.org/10.1039/C9CP00036D
  31. Buck, F., Kistner, I., Rösler, C., Schulz, A., Walker, M., Tovar, G., & Schiestel, T. (2019). Einsatz von perowskitischen Hohlfasermembranen in einem Mikrowellenplasma. Chemie - Ingenieur - Technik, 91(8), 1117–1122. https://doi.org/10.1002/cite.201900048
  32. Carral, A. D., Sarap, C. S., Liu, K., Radenovic, A., & Fyta, M. (2019). 2D MoS2 nanopores: ionic current blockade height for clustering DNA events. 2D Materials, 6(4), 045011.
  33. Dorn, K. V., Blaschkowski, B., Bamberger, H., Slageren, J. van, Doll, K., Claus, R., Matsumoto, Y., Takagi, H., & Hartenbach, I. (2019). Black Current : Structure, Characterization, and Optoelectronic Properties of Ce3Cl3MoO6. Chemistry - a European Journal, 25(33), 7921–7926. https://doi.org/10.1002/chem.201901038
  34. Dotsenko, V. S., Maciolek, A., Oshanin, G., Vasilyev, O., & Dietrich, S. (2019). Current-mediated synchronization of a pair of beating non-identical flagella. New Journal of Physics, 21, 033036. https://doi.org/10.1088/1367-2630/ab0a80
  35. Driess, D., Schmitt, S., & Toussaint, M. (2019). Active Inverse Model Learning with Error and Reachable Set Estimates. IROS, 1826--1833.
  36. Ferrario, V., Fischer, M., Zhu, Y., & Pleiss, J. (2019). Modelling of substrate access and substrate binding to cephalosporin acylases. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-48849-z
  37. Geissen, E.-M., Hasenauer, J., & Radde, N. E. (2019). Inference of finite mixture models and the effect of binning. Statistical Applications in Genetics and Molecular Biology, 18(4), Article 4.
  38. Grabowski, B., Ikeda, Y., Srinivasan, P., Körmann, F., Freysoldt, C., Duff, A. I., Shapeev, A., & Neugebauer, J. (2019). Ab initio vibrational free energies including anharmonicity for multicomponent alloys. Npj Computational Materials, 5(1), 1--6.
  39. Göküzüm, F. S., Nguyen, L. T. K., & Keip, M.-A. (2019a). An Artificial Neural Network Based Solution Scheme for Periodic Computational Homogenization of Electrostatic Problems. Mathematical and Computational Applications, 24(2), 40. https://doi.org/10.3390/mca24020040
  40. Göküzüm, F. S., Nguyen, L. T. K., & Keip, M.-A. (2019b). An Artificial Neural Network based Solution Scheme to periodic Homogenization. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900271
  41. Krause, T. (2019). Informationskriterien zur latenten Klassenidentifikation für Multiple Indicator Growth Mixture Models. In SISS: Schriftenreihe des Instituts für Sozialwissenschaften (No. 46; Issue 46). Universität Stuttgart - Institut für Sozialwissenschaften. https://doi.org/10.18419/opus-10599
  42. Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1, 1850044), Article 1, 1850044. https://doi.org/10.1142/S2591728518500445
  43. Lambers, L., Ricken, T., & König, M. (2019). A multiscale and multiphase model for the description of function-perfusion processes in the human liver. Advances in Engineering Materials, Structures and Systems : Innovations, Mechanics and Applications : Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), September 2-4, 2019, Cape Town, South Africa, 304–307. https://doi.org/10.1201/9780429426506-52
  44. Rajski, B., & Becker, P. (2019). DSpace-Konsortium Deutschland – konsortial die Nachhaltigkeit sichern. LIBREAS. Library Ideas, 36, 1–8. https://libreas.eu/ausgabe36/rajski/
  45. Ricken, Tim, & Lambers, L. (2019). On computational approaches of liver lobule function and perfusion simulation. GAMM-Mitteilungen, 42(4), Article 4. https://doi.org/10.1002/gamm.201900016
  46. Romer, A., Trimpe, S., & Allgöwer, F. (2019). Data-driven inference of passivity properties via Gaussian process optimization. 2019 18th European Control Conference (ECC), 29--35.
  47. Romer, A., Berberich, J., Köhler, J., & Allgöwer, F. (2019). One-shot verification of dissipativity properties from input--output data. IEEE Control Systems Letters, 3(3), 709--714.
  48. Tomalka, A., Röhrle, O., Han, J.-C., Pham, T., Taberner, A. J., & Siebert, T. (2019). Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles. Proceedings of the Royal Society B, 286(1903), 20190719.
  49. Xu, X., Range, J., Gygli, G., & Pleiss, J. (2019). Analysis of Thermophysical Properties of Deep Eutectic Solvents by Data Integration. Journal of Chemical & Engineering Data, 65(3), 1172--1179. https://doi.org/10.1021/acs.jced.9b00555
  50. Driess, D., Zimmermann, H., Wolfen, S., Suissa, D., Haeufle, D., Hennes, D., Toussaint, M., & Schmitt, S. (2018). Learning to control redundant musculoskeletal systems with neural networks and SQP: exploiting muscle properties. 2018 IEEE International Conference on Robotics and Automation (ICRA), 6461--6468.
  51. Fink, D., Wagner, A., & Ehlers, W. (2018). Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. JOURNAL OF COMPUTATIONAL SCIENCE, 24, 101–115. https://doi.org/10.1016/j.jocs.2017.10.002
  52. Haeufle, D. F., Schmortte, B., Geyer, H., Müller, R., & Schmitt, S. (2018). The benefit of combining neuronal feedback and feed-forward control for robustness in step down perturbations of simulated human walking depends on the muscle function. Frontiers in Computational Neuroscience, 12, 80.
  53. Hocker, S., Lipp, H., Eisfeld, E., Schmauder, S., & Roth, J. (2018). Precipitation strengthening in Cu--Ni--Si alloys modeled with ab initio based interatomic potentials. The Journal of Chemical Physics, 149(2), 024701.
  54. Ricken, Tim, Waschinsky, N., & Werner, D. (2018). Simulation of steatosis zonation in liver lobule—a continuummechanical bi-scale, tri-phasic, multi-component approach. In Biomedical technology (pp. 15--33). Springer.
  55. Romer, A., Montenbruck, J. M., & Allgöwer, F. (2018a). Data-driven inference of conic relations via saddle-point dynamics. IFAC-PapersOnLine, 51(25), 396--401.
  56. Romer, A., Montenbruck, J. M., & Allgöwer, F. (2018b). Some ideas on sampling strategies for data-driven inference of passivity properties for MIMO systems. 2018 Annual American Control Conference (ACC), 6094--6100.
  57. Soloperto, R., Müller, M. A., Trimpe, S., & Allgöwer, F. (2018). Learning-based robust model predictive control with state-dependent uncertainty. IFAC-PapersOnLine, 51(20), 442--447.
  58. Zong, H., Pilania, G., Ding, X., Ackland, G. J., & Lookman, T. (2018). Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning. Npj Computational Materials, 4(1), 1--8.
  59. Bayer, A., Schmitt, S., Günther, M., & Haeufle, D. (2017). The influence of biophysical muscle properties on simulating fast human arm movements. Computer Methods in Biomechanics and Biomedical Engineering, 20(8), 803--821.
  60. Behler, J. (2017). First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angewandte Chemie International Edition, 56(42), 12828--12840.
  61. Christ, B., Dahmen, U., Herrmann, K.-H., König, M., Reichenbach, J. R., Ricken, T., Schleicher, J., Ole Schwen, L., Vlaic, S., & Waschinsky, N. (2017). Computational Modeling in Liver Surgery. Frontiers in Physiology, 8, 906. https://doi.org/10.3389/fphys.2017.00906
  62. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase    transition and surface tension. JOURNAL OF COMPUTATIONAL PHYSICS, 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
  63. Kolb, B., Lentz, L. C., & Kolpak, A. M. (2017). Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods. Scientific Reports, 7(1), 1--9.
  64. Romer, A., Montenbruck, J. M., & Allgöwer, F. (2017a). Determining dissipation inequalities from input-output samples. IFAC-PapersOnLine, 50(1), 7789--7794.
  65. Romer, A., Montenbruck, J. M., & Allgöwer, F. (2017b). Sampling strategies for data-driven inference of passivity properties. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 6389--6394.
  66. Schröder, P., Wagner, A., Stöhr, D., Rehm, M., & Ehlers, W. (2017). Variation of different growth descriptions in a metastatic proliferation model. In M. von Scheven, M.-A. Keip, & N. Karajan (Eds.), Proceedings of the 7th GACM Colloquium on Computational Mechanics (pp. 259–262).
  67. Montenbruck, J. M., & Allgöwer, F. (2016). Some problems arising in controller design from big data via input-output methods. 2016 IEEE 55th Conference on Decision and Control (CDC), 6525--6530.
  68. Redeker, M., Rohde, C., & Pop, I. S. (2016). Upscaling of a tri-phase phase-field model for precipitation in porous    media. IMA JOURNAL OF APPLIED MATHEMATICS, 81(5), 898–939. https://doi.org/10.1093/imamat/hxw023
  69. Shapeev, A. V. (2016). Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Modeling & Simulation, 14(3), 1153--1173.
  70. Ehlers, W., & Wagner, A. (2015). Multi-component modelling of human brain tissue: a contribution to the    constitutive and computational description of deformation, flow and    diffusion processes with application to the invasive drug-delivery    problem. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 18(8), 861–879. https://doi.org/10.1080/10255842.2013.853754
  71. Kissling, F., & Rohde, C. (2015). THE COMPUTATION OF NONCLASSICAL SHOCK WAVES IN POROUS MEDIA WITH A    HETEROGENEOUS MULTISCALE METHOD: THE MULTIDIMENSIONAL CASE. MULTISCALE MODELING & SIMULATION, 13(4), 1507–1541. https://doi.org/10.1137/120899236
  72. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxation of the Navier-Stokes-Korteweg equations for compressible two-phase flow with phase transition. International Journal for Numerical Methods in Fluids, 79(12), 615–639. https://doi.org/10.1002/fld.4065
  73. Ricken, T., Werner, D., Holzhütter, H. G., König, M., Dahmen, U., & Dirsch, O. (2015). Modeling function--perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE--ODE approach. Biomechanics and Modeling in Mechanobiology, 14(3), 515--536. https://doi.org/10.1007/s10237-014-0619-z
  74. Ricken, Tim, Dahmen, U., Dirsch, O., & Werner, D. Q. (2013). A Biphasic 3D-FEM model for the remodeling of microcirculation in liver lobes. In Computer Models in Biomechanics (pp. 277--292). Springer.
  75. Ricken, Tim, Dahmen, U., & Dirsch, O. (2010). A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomechanics and Modeling in Mechanobiology, 9(4), 435--450. https://doi.org/10.1007/s10237-009-0186-x
  76. Ricken, Tim, & Bluhm, J. (2010). Remodeling and growth of living tissue: a multiphase theory. Archive of Applied Mechanics, 80(5), 453--465.
  77. Cardillo, E., & Feser, K. (2004). New Approach in Thermal Monitoring of Large Power Transformers Applied on a 350 MVA ODAF–Cooled Unit. APTADM 2004, Wroclaw, Poland. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_aptadm_cardillo.pdf
  78. Christian, J., & Feser, K. (2004). Procedures for Detecting Winding Displacements in Power Transformers by the Transfer Function Method. IEEE Transactions on Power Delivery, 15(1), 214–220.
  79. Eckholz, K., Knoww, W., Schäfer, M., Feser, K., & Cardillo, E. (2004). New Developments in Transformer Cooling Calculation. CIGRE 2004, Paris, France. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_cigre_eckholz.pdf
  80. Feser, K. (2004). Entwicklungen und Aufgaben in der Hochspannungstechnik. Kap. 1, 1-7.
  81. Keller, C., & Feser, K. (2004). Schnelle Emissionsmessung im Zeitbereich als zeitsparende Alternative. 507. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_emv_duesseldorf_keller.pdf
  82. Koch, M., Lange, T., Löhning, G., & Schwarz, H. (2004). Optimierung und Feldberechnung an einer impulsbasierten EMV-Systemprüfanlage. 47. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_emvduesseldorf_koch.pdf
  83. Koch, M., & Feser, K. (2004a). Reliability and Influences on Dielectric Diagnostic Methods to Evaluate the Ageing State of Oil-Paper Insulations. APTADM 2004, Wroclaw, Poland. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_aptadm_koch.pdf
  84. Koch, M., & Feser, K. (2004b). Vergleichende Untersuchungen an dielektrischen Diagnosemethoden für Leistungstransformatoren. 265–270. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_etg_koch.pdf
  85. Kull, M., Feser, K., & Reinhardt, U. (2004). Measurements and Simulations of Transient Switching Phenomena in Modern Passenger Cars. SAE World Congress, Detroit, USA.
  86. Kull, M., & Feser, K. (2004). Schnelle transiente Vorgänge im Kfz-Bordnetz. 673.
  87. Markalous, S. M. (2004). Online akustische TE-Überwachung und Ortung an Transformatoren. Kap. 12, 1-17. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_Micafil_Markalous.pdf
  88. Müller, L., & Feser, K. (2004). Die Untersuchung der Entladung elektrostatisch aufgeladener Kunststoffe. 111. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_emv-duesseldorf_mueller.pdf
  89. Osztermayer, J. (2004). Neue Ansätze im Asset-Management von elektrischen Betriebsmitteln. Kap. 5, 1-18. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_micafil_osztermayer.pdf
  90. Radakovic, Z., Cardillo, E., & Feser, K. (2004). Algorithm of the Microprocessor Thermal Protection of oil Power Transformers. 380–383. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_iee_radakovic.pdf
  91. Rösner, M., & Tenbohlen, S. (2004). Online-Feuchtigkeitsüberwachung der festen Isolierstoffe in Leistungstransformatoren. 315–319. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_ETG_Tenbohlen.PDF
  92. Schäfer, M., Feser, K., & Cardillo, E. (2004). Thermisches Verhalten und Überlastbarkeit von Leistungstransformatoren. Kap. 4, 1-13. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_micafil_schaefer.pdf
  93. Tenbohlen, S. (2004). Leistungstransformatoren – Neue Trends bei Design, Produktion und Betriebsüberwachung. Kap. 7, 1-9. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_Micafil_Tenbohlen.pdf
  94. Tenbohlen, S., Stach, M., Lainck, T., Gunkel, G. W. H., Altmann, J., Daemisch, G., & Bräsel, E. (2004). New Concepts for Prevention of Ageing by means of On-line Degassing and Drying and Hermetically Sealing of Power Transformers. CIGRE 2004, Paris, France. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_Cigre_Tenbohlen.pdf
  95. Tenbohlen, S., Kachler, A. J., Stach, M., Leibfried, T., & Höhlein-Atanosova, I. (2004). Transformer Life Management German Experience with Condition Assessment. 327–342. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_etg_2_tenbohlen.pdf
  96. Wimmer, R., & Feser, K. (2004). Berechnung der Übertragungsfunktion aus Online-Messdaten. 275–280. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_etg_wimmer.pdf
  97. Wimmer, R. M., & Feser, K. (2004). Calculation of the Transfer Function of a Power Transformer with Online Measuring Data. APTADM 2004, Wroclaw, Poland. https://www.ieh.uni-stuttgart.de/dokumente/publikationen/2004_aptadm_wimmer.pdf
  98. Zerrer, M., Keller, C., Feser, K., & Reinhardt, U. (2004). Fast EMC Emission Measurement in Time Domain. SAE World Congress, Detroit, USA.
  99. Fujii, T., Nakazawa, H., Kato, M., & Dahmen, U. (2000). Crystallography and morphology of nanosized Cr particles in a Cu--0.2\% Cr alloy. Acta Materialia, 48(5), 1033--1045.
  100. Winner, L. (1980). Do Artifacts Have Politics? Daedalus, 109(1), 121–136. http://www.jstor.org/stable/20024652

Best Practices

  1. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  2. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53(10–11), Article 10–11. https://doi.org/10.1515/bd-2019-0098
  3. Austin, C. C., Bloom, T., Dallmeier-Tiessen, S., Khodiyar, V. K., Murphy, F., Nurnberger, A., Raymond, L., Stockhause, M., Tedds, J., Vardigan, M., & Whyte, A. (2017). Key components of data publishing: using current best practices to develop a reference model for data publishing. International Journal on Digital Libraries, 18(2), 77--92. https://doi.org/10.1007/s00799-016-0178-2
  4. Fehr, J., and Jan Heiland, Himpe, C., & Saak, J. (2016). Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software. AIMS Mathematics, 1(3), 261--281. https://doi.org/10.3934/math.2016.3.261

Beschreibung von Forschungsdaten

  1. Schembera, B., & Iglezakis, D. (forthcoming). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In Metadata and Semantic Research. 12th International Conference, MTSR 2018, Limassol, Cyprus, 23-26 October 2018, Proceedings. Springer.
  2. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1, 28–38. https://doi.org/10.17192/bfdm.2020.1.8085
  3. Schembera, B., & Iglezakis, D. (2020). EngMeta - Metadata for Computational Engineering. International Journal of Metadata, Semantics and Ontologies, 14(1), 26–38. https://doi.org/10.1504/IJMSO.2020.107792
  4. Selent, B., Kraus, H., Hansen, N., Schembera, B., Seeland, A., & Iglezakis, D. (2020). Management of Research Data in Computational Fluid Dynamics and Thermodynamics. In V. Heuveline, F. Gebhart, & N. Mohammadianbisheh (Eds.), E-Science-Tage 2019: Data to Knowledge (pp. 128–139). HeiBOOKS. https://doi.org/10.11588/heibooks.598
  5. Grunzke, R., Hartmann, V., Jejkal, T., Kollai, H., Prabhune, A., Herold, H., Deicke, A., Dressler, C., Dolhoff, J., Stanek, J., Hoffmann, A., Müller-Pfefferkorn, R., Schrade, T., Meinel, G., Herres-Pawlis, S., & Nagel, W. E. (2019). The MASi repository service — Comprehensive, metadata-driven and multi-community research data management. Future Generation Computer Systems, 94, 879–894. https://doi.org/10.1016/j.future.2017.12.023
  6. Iglezakis, D., & Schembera, B. (2019). EngMeta - a Metadata Scheme for the Engineering Sciences. DaRUS. https://doi.org/10.18419/darus-500
  7. Iglezakis, D. (2019). Relevance of Different Metadata Fields for the Description of Research Data from the Engineering Sciences (DaRUS, Ed.). https://doi.org/10.18419/darus-501
  8. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  9. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Eds.), Metadata and Semantic Research (No. 846; Issue 846, pp. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  10. Sprenger, J., Zehl, L., Pick, J., Sonntag, M., Grewe, J., Wachtler, T., Grün, S., & Denker, M. (2019). odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments. Ludwig-Maximilians-Universität München. https://epub.ub.uni-muenchen.de/69215/
  11. Balatsoukas, P., Rousidis, D., & Garoufallou, E. (2018). A method for examining metadata quality in open research datasets using the OAI-PMH and SQL queries: the case of the Dublin Core “Subject” element and suggestions for user-centred metadata annotation design. IJMSO, 13(1), 1–8. http://dblp.uni-trier.de/db/journals/ijmso/ijmso13.html#BalatsoukasRG18
  12. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  13. Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12(2), Article 2. https://doi.org/10.2218/ijdc.v12i2.577
  14. Gärtner, M., Hahn, U., & Hermann, S. (2018a). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. 563--570). European Language Resources Association (ELRA).
  15. Gärtner, M., Hahn, U., & Hermann, S. (2018b). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. C. (Conference chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA).
  16. Group, D. M. W. (2017). DataCite Metadata Schema for the Publication and Citation of Research Data. Version 4.1. https://doi.org/10.5438/0015
  17. Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., & others. (2017). Ground: A Data Context Service. CIDR.
  18. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., Gil, Y. G., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., & Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  19. Schembera, B., & Bönisch, T. (2017). Challenges of Research Data Management for High Performance Computing. International Conference on Theory and Practice of Digital Libraries, 140--151. https://link.springer.com/chapter/10.1007/978-3-319-67008-9_12
  20. Stein, A., Applegate, K. J., & Robbins, S. (2017). Achieving and Maintaining Metadata Quality: Toward a Sustainable Workflow for the IDEALS Institutional Repository. Cataloging & Classification Quarterly, 55(7–8), 644–666. https://doi.org/10.1080/01639374.2017.1358786
  21. Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino da Silva Santos, L. O., & Dumontier, M. (2017). A design framework and exemplar metrics for FAIRness. BioRxiv. https://doi.org/10.1101/225490
  22. Kohwalter, T., Oliveira, T., Freire, J., Clua, E., & Murta, L. (2016). Prov Viewer: A Graph-Based Visualization Tool for Interactive Exploration of Provenance Data. In M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 71--82). Springer International Publishing.
  23. Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated quality assessment of metadata across open data portals. Journal of Data and Information Quality (JDIQ), 8(1), 2.
  24. Pimentel, J. F., Freire, J., Braganholo, V., & Murta, L. (2016). Tracking and Analyzing the Evolution of Provenance from Scripts. In M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 16--28). Springer International Publishing.
  25. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/10.1016/j.commatsci.2015.09.013
  26. Schreiber, A. (2016). Standardisierung eines erweiterbaren Modells für Provenance-Daten (PROV-SPEC) (No. 2016–04). 2016–04, Article 2016–04.
  27. Wu, K., Coviello, E. N., Flanagan, S. M., Greenwald, M., Lee, X., Romosan, A., Schissel, D. P., Shoshani, A., Stillerman, J., & Wright, J. (2016). MPO: A System to Document and Analyze Distributed Heterogeneous Workflows. In M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 166--170). Springer International Publishing.
  28. Belhajjame, K., Zhao, J., Garijo, D., Gable, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the World Wide Web, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  29. Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14(0), 2. https://doi.org/10.5334/dsj-2015-002
  30. Chao, T. (2015). Mapping Methods Metadata for Research Data. International Journal of Digital Curation, 10(1), Article 1. https://doi.org/10.2218/ijdc.v10i1.347
  31. Moreau, L., Groth, P., Cheney, J., Lebo, T., & Miles, S. (2015). The rationale of PROV. Web Semantics: Science, Services and Agents on the World Wide Web, 35(4), 235–257. https://doi.org/10.1016/j.websem.2015.04.001
  32. Rasaiah, B. A., Jones, S. D., Bellman, C., Malthus, T. J., & Hueni, A. (2015). Assessing Field Spectroscopy Metadata Quality. Remote Sensing, 7(4), 4499–4526. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahJBMH15
  33. Rasaiah, B. A., Bellman, C., Jones, S. D., Malthus, T. J., & Roelfsema, C. M. (2015). Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sensing, 7(11), 15668–15701. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahBJMR15
  34. Starr, J., Castro, E., Crosas, M., Dumontier, M., Downs, R. R., Duerr, R., Haak, L. L., Haendel, M., Herman, I., Hodson, S., Hourclé, J., Kratz, J. E., Lin, J., Nielsen, L. H., Nurnberger, A., Proell, S., Rauber, A., Sacchi, S., Smith, A., … Clark, T. (2015). Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.1
  35. Brauer, P., Czerniak, A., & Hasselbring, W. (2014). Start Smart and Finish Wise: The Kiel Marine Science Provenance-Aware Data Management Approach. In A. Chapman, B. Ludäscher, & A. Schreiber (Eds.), TAPP. USENIX Association. http://dblp.uni-trier.de/db/conf/tapp/tapp2014.html#BrauerCH14
  36. Farnel, S., & Shiri, A. (2014). Metadata for Research Data: Current Practices and Trends. In W. E. Moen & A. Rushing (Eds.), Dublin Core Conference (pp. 74–82). Dublin Core Metadata Initiative. http://dblp.uni-trier.de/db/conf/dc/dc2014.html#FarnelS14
  37. Grunzke, R., Hesser, J., Starek, J., Kepper, N., Gesing, S., Hardt, M., Hartmann, V., Kindermann, S., Potthoff, J., Hausmann, M., Müller-Pfefferkorn, R., & Jäkel, R. (2014). Device-Driven Metadata Management Solutions for Scientific Big Data Use Cases. 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 317–321.
  38. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M., & Krüger, J. (2014a). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744--1759. https://doi.org/10.1002/cpe.3116
  39. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M. P., & Krüger, J. (2014b). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26(10), 1744–1759. http://dblp.uni-trier.de/db/journals/concurrency/concurrency26.html#GrunzkeBGHKBGPSSSSSMJNA014
  40. Malik, T. (2014). Geobase: Indexing NetCDF Files for large-scale Data Analysis. In Big Data Management, Technologies, and Applications (pp. 295--313). IGI Global. https://doi.org/10.4018/978-1-4666-4699-5.ch012
  41. Rousidis, D., Sicilia, M.-Á., Garoufallou, E., & Balatsoukas, P. (2014). Data Quality Issues and Content Analysis for Research Data Repositories : The Case of Dryad. In P. Polydoratou & M. Dobreva (Eds.), ELPUB (pp. 49–58). IOS Press. http://dblp.uni-trier.de/db/conf/elpub/elpub2014.html#RousidisSGB14
  42. Rousidis, D., Garoufallou, E., Balatsoukas, P., & Sicilia, M.-Á. (2014). Metadata for Big Data: A preliminary investigation of metadata quality issues in research data repositories. Inf. Services and Use, 34(3–4), 279–286. http://dblp.uni-trier.de/db/journals/isu/isu34.html#RousidisGBS14
  43. Tran, H. D., Holt, J., Goodrich, R. W., Mader, J. A., Swain, M., Laity, A. C., Kong, M., Gelino, C. R., & Berriman, G. B. (2014). Metadata and Data Management for the Keck Observatory Archive. https://doi.org/10.1117/12.2054830
  44. Bechhofer, S., Buchan, I., de Roure, D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., & Goble, C. (2013). Why linked data is not enough for scientists. Future Generation Computer Systems, 29(2), 599–611. https://doi.org/10.1016/j.future.2011.08.004
  45. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., & Zhao, J. (2013). PROV-O: The PROV Ontology. https://www.w3.org/TR/prov-o/
  46. Sahoo, S., Lebo, T., & McGuinness, D. (2013). PROV-O: The PROV Ontology [{W3C} Recommendation]. W3C.
  47. Grewe, J., Wachtler, T., & Benda, J. (2011). A Bottom-up Approach to Data Annotation in Neurophysiology. Frontiers in Neuroinformatics, 5. https://doi.org/10.3389/fninf.2011.00016
  48. Han, J., Miller, J. A., & Silver, G. A. (2011). SoPT: Ontology for simulation optimization for scientific experiments. Proceedings of the 2011 Winter Simulation Conference (WSC), 2909–2920. https://doi.org/10.1109/WSC.2011.6147994
  49. Murray-Rust, P., & Rzepa, H. S. (2011). CML: Evolution and design. J. Cheminformatics, 3, 44. http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf3.html#Murray-RustR11
  50. Murray-Rust, P., Townsend, J., Adams, S. E., Phadungsukanan, W., & Thomas, J. (2011). The semantics of Chemical Markup Language (CML): dictionaries and conventions. J. Cheminformatics, 3, 43. http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf3.html#Murray-RustTAPT11
  51. Park, J.-R., & Tosaka, Y. (2010). Metadata Quality Control in Digital Repositories and Collections: Criteria, Semantics, and Mechanisms. Cataloging & Classification Quarterly, 48(8), 696–715. https://doi.org/10.1080/01639374.2010.508711
  52. Park, J.-R. (2009). Metadata Quality in Digital Repositories: A Survey of the Current State of the Art. Cataloging & Classification Quarterly, 47(3–4), 213–228. https://doi.org/10.1080/01639370902737240
  53. Hillmann, D. I. (2008). Metadata Quality: From Evaluation to Augmentation. Cataloging & Classification Quarterly, 46(1), 65–80. https://doi.org/10.1080/01639370802183008
  54. Vardigan, M., Heus, P., & Thomas, W. (2008). Data Documentation Initiative: Toward a Standard for the Social Sciences. IJDC, 3(1), 107–113. https://doi.org/10.2218/ijdc.v3i1.45
  55. Lautenschlager, M., Toussaint, F., Thiemann, H., & Reinke, M. (1998). The CERA-2 data model. https://www.pik-potsdam.de/cera/Descriptions/Publications/Papers/9807_DKRZ_TechRep15/cera2.pdf

Anforderungen der Forschungsförderer, politische Entwicklung

  1. für Bildung und Forschung (BMBF), B. (Ed.). (2016). Open Access in Deutschland. https://www.bmbf.de/pub/Open_Access_in_Deutschland.pdf

Kontakt

 

FoKUS - Kompetenzzentrum für Forschungsdaten

Zum Seitenanfang