Literatur

Sie wollen tiefer einsteigen? Aktuelle Literaturempfehlungen zum Thema Forschungsdatenmanagement.

true" ? copyright : '' }

Rechtliche Fragestellungen

  1. Sganga, C., Gebreyesus, N. H., van Wezel, J., Foggetti, N., Amram, D., & Drago, F. (2022). EOSC-Pillar Legal Compliance Guidelines for Researchers: a Checklist (interactive digital version). Zenodo. https://doi.org/10.5281/zenodo.6327668
  2. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53, Article 10–11. https://doi.org/10.1515/bd-2019-0098
  3. Wirth, T. (2020). Die Pflicht zur Löschung von Forschungsdaten – Urheber- und Datenschutzrecht im Widerspruch zu den Erfordernissen guter wissenschaftlicher Praxis? Zeitschrift Für Urheber- Und Medienrecht (ZUM), 64, Article 8/9. https://www.zew.de/publikationen/die-pflicht-zur-loeschung-von-forschungsdaten-urheber-und-datenschutzrecht-im-widerspruch-zu-den-erfordernissen-guter-wissenschaftlicher-praxis
  4. Stietenroth, D., Nieschulze, J., & Arend, K. (2005). Rechtliche Aspekte und Umsetzung des Datenmanagement in internationalen interdisziplinären Forschungsprojekten. Zeitschrift Für Agrarinformatik, 3, 64–75. http://www.gil.de/publications/zai/archiv/11_3_2005.pdf
  5. Brettschneider, P., Axtmann, A., Böker, E., & von Suchodoletz, D. (2021). Offene Lizenzen für Forschungsdaten - Rechtliche Bewertung und Praxistauglichkeit verbreiteter Lizenzmodelle. O-Bib. Das Offene Bibliotheksjournal, 8, Article 3. https://doi.org/10.5282/o-bib/5749
  6. Kubis, M., Naczinsky, M., Selzer, A., Sperlich, T., Steiner, S., & Waldmann, U. (2019). Der digitale nachlass - Eine Untersuchung aus rechtlicher und technischer Sicht (F.-I. für Sichere Informationstechnologie, U. Bremen/IGMR, & U. Regensburg, Eds.). https://doi.org/10.24406/sit-n-572149
  7. Johannes, P. C., Potthoff, J., Roßnagel, A., Neumair, B., Madiesh, M., & Hackel, S. (2013). Beweissicheres elektronisches Laborbuch (Nomos, Ed.).
  8. Lauber‐Rönsberg, A., Krahn, P., & Baumann, P. (2018). Gutachten zu den rechtlichen Rahmenbedingungen des Forschungsdatenmanagements. https://tu-dresden.de/gsw/jura/igewem/jfbimd13/ressourcen/dateien/publikationen/DataJus_Zusammenfassung_Gutachten_12-07-18.pdf?lang=de
  9. Hannover, L. U., & Informationsbibliothek, T. (2018). FAQs Zu Rechtlichen Aspekten Im Umgang Mit Forschungsdaten. https://doi.org/10.5281/zenodo.1173546
  10. Volkmann, S., Feiten, L., Zimmermann, C., Sester, S., Wehle, L., & Becker, B. (2016). Digitale Tarnkappe: Anonymisierung in Videoaufnahmen. In H. C. Mayr & M. Pinzger (Eds.), GI-Jahrestagung: Vol. P-259 (pp. 413–426). GI. http://dblp.uni-trier.de/db/conf/gi/gi2016.html#VolkmannFZSWB16
  11. Guibault, L., & Wiebe, A. (2013). Safe to be open. Study on the protection of research data and recommendations für access and usage. Universitätsverlag Göttingen.
  12. Käde, L. (2021). Kreative Maschinen und Urheberrecht (1 ed., Vol. 2). Nomos. https://www.nomos-elibrary.de/10.5771/9783748912453/kreative-maschinen-und-urheberrecht?page=1
  13. Sganga, C., Gebreyesus, N. H., van Wezel, J., Foggetti, N., Amram, D., & Drago, F. (2022). EOSC-Pillar Legal Compliance Guidelines for Researchers: a Checklist (interactive digital version). Zenodo. https://doi.org/10.5281/zenodo.6327668
  14. Kleinkopf, F., Jacke, J., & Gärtner, M. (2021). Urheberrechtliche Grenzen der Nachnutzung wissenschaftlicher Korpora bei computergestützten Verfahren und digitalen Ressourcen.
  15. Klimpel, P. (2018). Mehr als Materialbewahrung Über die Bedeutung von Rechteinformationen und Lizenzierung in Bibliotheken. Lizenzangaben Und Rechtedokumentationen Im Dialog – Datenflüsse Nachhaltig Gestalten.
  16. Nationalbibliothek, D. (2018). Lizenzangaben und Rechtedokumentationen im Dialog - Datenflüsse nachhaltig gestalten.
  17. Meyermann, A., & Porzelt, M. (2014). Hinweise zur Anonymisierung von qualitativen Daten. Forschungsdaten Bildung Informiert, Article 1. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-1.pdf
  18. Ebel, T., & Meyermann, A. (2015). Hinweise zur Anonymisierung von quantitativen Daten. Forschungsdaten Bildung Informiert, Article 3. https://www.forschungsdaten-bildung.de/get_files.php?action=get_file&file=fdb-informiert-nr-3.pdf
  19. Kreutzer, T., & Lahmann, H. (2019). Rechtsfragen bei Open Science. Hamburg University Press. https://doi.org/10.15460/HUP.195
  20. Baumann, P. (2023). Rechte an Forschungsdaten [Trier University]. https://doi.org/10.25353/UBTR-81E9-927D-E6DD
  21. Depping, R. (2023). Rechtliche Aspekte des Forschungsdatenmanagements - Eine Einführung.
  22. Kreutzer, T., & Fischer, G. (2023). Urheberrecht in der Wissenschaft. Ein Überblick für Forschung, Lehre und Bibliotheken. Zenodo. https://doi.org/10.5281/zenodo.8284551

Forschungssoftware

  1. Castro, L. J., Ferenz, S., Hajiabadi, H., Kuckertz, P., Löbe, M., Schmidt, C., Struck, A., & Thiery, F. (2024). Results on a Survey on Research Software Metadata in the NFDI Consortia. Zenodo. https://doi.org/10.5281/zenodo.12704414
  2. David, M., Colom, M., Garijo, D., Castro, L. J., Louvet, V., Ronchieri, E., Torquati, M., del Caño, L., Cerlane, L., Van den Bossche, M., Campos, I., & Di Cosmo, R. (2024). Ensure Software Quality. Zenodo. https://doi.org/10.5281/zenodo.10723608
  3. David, M., Colom, M., Garijo, D., Castro, L. J., Louvet, V., Ronchieri, E., Torquati, M., del Caño, L., Cerlane, L., Van den Bossche, M., Campos, I., & Di Cosmo, R. (2024). Ensure Software Quality. Zenodo. https://doi.org/10.5281/zenodo.10723608
  4. Flemisch, B., Hermann, S., Herschel, M., Pflüger, D., Pleiss, J., Range, J., Roy, S., Takamoto, M., & Uekermann, B. (2024). Research Data Management in Simulation Science: Infrastructure, Tools, and Applications. Datenbank-Spektrum. https://doi.org/10.1007/s13222-024-00475-4
  5. Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.-L., & Rumpe, B. (2023). Toward Research Software Engineering Research. Zenodo. https://doi.org/10.5281/ZENODO.8020525
  6. Gruenpeter, M., Granger, S., Monteil, A., Chue Hong, N., Breitmoser, E., Antonioletti, M., Garijo, D., González Guardia, E., Gonzalez Beltran, A., Goble, C., Soiland-Reyes, S., Juty, N., & Mejias, G. (2023). D4.4 - Guidelines for recommended metadata standard for research software within EOSC. Zenodo. https://doi.org/10.5281/zenodo.8097537
  7. Gruenpeter, M., Granger, S., Monteil, A., Chue Hong, N., Breitmoser, E., Antonioletti, M., Garijo, D., González Guardia, E., Gonzalez Beltran, A., Goble, C., Soiland-Reyes, S., Juty, N., & Mejias, G. (2023). D4.4 - Guidelines for recommended metadata standard for research software within EOSC. Zenodo. https://doi.org/10.5281/zenodo.8097537
  8. Gruenpeter, M., Granger, S., Monteil, A., Chue Hong, N., Breitmoser, E., Antonioletti, M., Garijo, D., González Guardia, E., Gonzalez Beltran, A., Goble, C., Soiland-Reyes, S., Juty, N., & Mejias, G. (2023). D4.4 - Guidelines for recommended metadata standard for research software within EOSC. Zenodo. https://doi.org/10.5281/zenodo.8097537
  9. Koch, T., Gläser, D., Seeland, A., Roy, S., Schulze, K., Weishaupt, K., Boehringer, D., Hermann, S., & Flemisch, B. (2023). A sustainable infrastructure concept for improved accessibility, reusability, and archival of research software.
  10. Koch, T., Gläser, D., Seeland, A., Roy, S., Schulze, K., Weishaupt, K., Boehringer, D., Hermann, S., & Flemisch, B. (2023). A sustainable infrastructure concept for improved accessibility, reusability, and archival of research software.
  11. Selzer, M. (2023). Kadi4Mat - Karlsruhe Data Infrastructure for Materials Science [Zenodo]. https://doi.org/10.5281/ZENODO.8424794
  12. Druskat, S., Bertuch, O., Juckeland, G., Knodel, O., & Schlauch, T. (2022). Software publications with rich metadata: state of the art, automated workflows and HERMES concept.
  13. Druskat, S., Bertuch, O., Juckeland, G., Knodel, O., & Schlauch, T. (2022). Software publications with rich metadata: state of the art, automated workflows and HERMES concept.
  14. Hirsch, M., Iglezakis, D., Leymann, F., & Zimmermann, M. (2022). The ReSUS Project - Infrastructure for Sharing Research Software. In E-Science-Tage 2021: Share Your Research Data (pp. 267–276). heiBOOKS. https://doi.org/10.11588/HEIBOOKS.979.C13737
  15. Martinez, P. A., Barker, M., Struck, A., Castro, L. J., Erdmann, C., Garijo, D., Gesing, S., Loewe, A., & Moldón, J. (2022). A Survey on Adoption Guidelines for the FAIR4RS Principles. Zenodo. https://doi.org/10.5281/zenodo.6374598
  16. Martinez, P. A., Struck, A., Castro, L. J., Garijo, D., Loewe, A., Gesing, S., Barker, M., Chue Hong, N., Erdmann, C., Martinez-Ortiz, C., & Sansone, S.-A. (2022, March). A Survey on Adoption Guidelines for the FAIR4RS Principles: Dataset [Zenodo]. https://doi.org/10.5281/zenodo.6375540
  17. Martinez-Ortiz, C., Katz, D. S., Lamprecht, A.-L., Barker, M., Loewe, A., Fouilloux, A., Wyngaard, J., Garijo, D., Moldon, J., Castro, L. J., Wheeler, D., Albers, J. R. D., & Lee, A. (2022). FAIR4RS: Adoption support. Zenodo. https://doi.org/10.5281/zenodo.6258366
  18. Martinez-Ortiz, C., Martinez Lavanchy, P., Sesink, L., Olivier, B. G., Meakin, J., de Jong, M., & Cruz, M. (2022). Practical guide to Software Management Plans. Zenodo. https://doi.org/10.5281/zenodo.7248877
  19. Samuel, S., & Mietchen, D. (2022). Computational reproducibility of Jupyter notebooks from biomedical publications.
  20. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., et al. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  21. Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., & Carver, J. C. (2021). Software engineering practices for scientific software development: A systematic mapping study. Journal of Systems and Software, 172, 110848. https://doi.org/10.1016/j.jss.2020.110848
  22. Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2021). FAIR Principles for Research Software (FAIR4RS Principles). https://doi.org/10.15497/RDA00068
  23. Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2021). FAIR Principles for Research Software (FAIR4RS Principles). https://doi.org/10.15497/RDA00068
  24. Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2021). FAIR Principles for Research Software (FAIR4RS Principles). https://doi.org/10.15497/RDA00068
  25. Cimiano, P., Pietsch, C., & Wiljes, C. (2021). Studies in Analytical Reproducibility: the Conquaire Project (p. 8057464 bytes). https://doi.org/10.4119/UNIBI/2942780
  26. Gruenpeter, M., Katz, D. S., Lamprecht, A.-L., Honeyman, T., Garijo, D., Struck, A., Niehues, A., Martinez, P. A., Castro, L. J., Rabemanantsoa, T., Chue Hong, N. P., Martinez-Ortiz, C., Sesink, L., Liffers, M., Fouilloux, A. C., Erdmann, C., Peroni, S., Martinez Lavanchy, P., Todorov, I., & Sinha, M. (2021). Defining Research Software: a controversial discussion. Zenodo. https://doi.org/10.5281/ZENODO.5504016
  27. Gruenpeter, M., Katz, D. S., Lamprecht, A.-L., Honeyman, T., Garijo, D., Struck, A., Niehues, A., Martinez, P. A., Castro, L. J., Rabemanantsoa, T., Chue Hong, N. P., Martinez-Ortiz, C., Sesink, L., Liffers, M., Fouilloux, A. C., Erdmann, C., Peroni, S., Martinez Lavanchy, P., Todorov, I., & Sinha, M. (2021). Defining Research Software: a controversial discussion. Zenodo. https://doi.org/10.5281/ZENODO.5504016
  28. Katz, D. S., Gruenpeter, M., & Honeyman, T. (2021). Taking a fresh look at FAIR for research software. Patterns, 2, Article 3. https://doi.org/10.1016/j.patter.2021.100222
  29. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., et al. (2021). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications, 81, 423–443. https://doi.org/10.1016/j.camwa.2020.02.012
  30. Lee, G., Bacon, S., Bush, I., Fortunato, L., Gavaghan, D., Lestang, T., Morton, C., Robinson, M., Rocca-Serra, P., Sansone, S.-A., & Webb, H. (2021). Barely sufficient practices in scientific computing. Patterns, 2, Article 2. https://doi.org/10.1016/j.patter.2021.100206
  31. Lee, G., Bacon, S., Bush, I., Fortunato, L., Gavaghan, D., Lestang, T., Morton, C., Robinson, M., Rocca-Serra, P., Sansone, S.-A., & Webb, H. (2021). Barely sufficient practices in scientific computing. Patterns, 2, Article 2. https://doi.org/10.1016/j.patter.2021.100206
  32. van Aalst, M., Ebenhoeh, O., & Matuszynska, A. (2021). Constructing and analysing dynamic models with modelbase v1.2.3: a software update. BMC BIOINFORMATICS, 22, Article 1. https://doi.org/10.1186/s12859-021-04122-7
  33. Alliez, P., Cosmo, R. D., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N. (2020). Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria. Computing in Science Engineering, 22, Article 1. https://doi.org/10.1109/MCSE.2019.2949413
  34. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., et al. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  35. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., et al. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  36. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., et al. (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.1
  37. Commission, E., for Research, D.-G., & Innovation. (2020). Scholarly infrastructures for research software : report from the EOSC Executive Board Working Group (WG) Architecture Task Force (TF) SIRS. Publications Office. https://doi.org/doi/10.2777/28598
  38. Cosmo, R. D., Gruenpeter, M., Marmol, B., Monteil, A., Romary, L., & Sadowska, J. (2020). Curated Archiving of Research Software Artifacts: Lessons Learned from the French Open Archive (HAL). International Journal of Digital Curation, 15, Article 1. https://doi.org/10.2218/ijdc.v15i1.698
  39. Cosmo, R. D., Gruenpeter, M., Marmol, B., Monteil, A., Romary, L., & Sadowska, J. (2020). Curated Archiving of Research Software Artifacts: Lessons Learned from the French Open Archive (HAL). International Journal of Digital Curation, 15, Article 1. https://doi.org/10.2218/ijdc.v15i1.698
  40. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
  41. Flemisch, B., Hermann, S., Holm, C., Mehl, M., Reina, G., Uekermann, B., Boehringer, D., Ertl, T., Grad, J.-N., Iglezakis, D., Jaust, A., Koch, T., Seeland, A., Weeber, R., Weik, F., & Weishaupt, K. (2020). Umgang mit Forschungssoftware an der Universität Stuttgart. Universität Stuttgart. https://doi.org/10.18419/OPUS-11178
  42. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). Open Source Research Software. Computer, 53, Article 8. https://doi.org/10.1109/MC.2020.2998235
  43. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 1. https://doi.org/10.17192/BFDM.2020.1.8085
  44. Magaña, P., Del-Rosal-Salido, J., Cobos, M., Lira-Loarca, A., & Ortega-Sánchez, M. (2020). Approaching Software Engineering for Marine Sciences: A Single Development Process for Multiple End-User Applications. Journal of Marine Science and Engineering, 8, Article 5. https://doi.org/10.3390/jmse8050350
  45. Pianosi, F., Sarrazin, F., & Wagener, T. (2020). How successfully is open-source research software adopted? Results and implications of surveying the users of a sensitivity analysis toolbox. Environmental Modelling & Software, 124, 104579. https://doi.org/10.1016/j.envsoft.2019.104579
  46. Ruiz-Rube, I., Person, T., Dodero, J. M., Mota, J. M., & Sánchez-Jara, J. M. (2020). Applying static code analysis for domain-specific languages. Software and Systems Modeling, 19, Article 1. https://doi.org/10.1007/s10270-019-00729-w
  47. SIRS, E. E. B. W. G. (. A. T. F. (. (2020). Scholarly infrastructures for research software (E. Commission, Ed.). European Commission. https://op.europa.eu/s/oMEw
  48. Trisovic, A., Durbin, P., Schlatter, T., Durand, G., Barbosa, S., Brooke, D., & Crosas, M. (2020). Advancing computational reproducibility in the Dataverse data repository platform. http://arxiv.org/abs/2005.02985
  49. Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., Martinez-Ortiz, C., der Velden, Y. T.-v., & van Werkhoven, B. (2019). Raising the Profile of Research Software: Recommendations for Funding Agencies and Research Institutions (NWO, Ed.).
  50. Ballhausen, M. (2019). Free and Open Source Software Licenses Explained. IEEE Computer, 52, Article 6. http://dblp.uni-trier.de/db/journals/computer/computer52.html#Ballhausen19
  51. Druskat, S., Spaaks, J. H., Chue Hong, N., Haines, R., & Baker, J. (2019). Citation File Format (CFF) - Specifications. Zenodo. https://doi.org/10.5281/zenodo.3515946
  52. Erdmann, C., Simons, N., Otsuji, R., Labou, S., Johnson, R., Castelao, G., Boas, B. V., Lamprecht, A.-L., Ortiz, C. M., Garcia, L., Kuzak, M., Martinez, P. A., Stokes, L., Honeyman, T., Wise, S., Quan, J., Peterson, S., Neeser, A., Karvovskaya, L., et al. (2019). Top 10 FAIR Data & Software Things. https://doi.org/10.5281/zenodo.2555498
  53. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2019). Sustainable Research Software Hand-Over. CoRR, abs/1909.09469. http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-09469
  54. Fehr, J., Himpe, C., Rave, S., & Saak, J. (2019). Sustainable Research Software Hand-Over. CoRR, abs/1909.09469. http://dblp.uni-trier.de/db/journals/corr/corr1909.html#abs-1909-09469
  55. Gomez-Diaz, T., & Recio, T. (2019). On the evaluation of research software: the CDUR procedure. F1000Research, 8, 1353. https://doi.org/10.12688/f1000research.19994.2
  56. Gärtner, M. (2019). RePlay-DH Client v1.3.0. https://doi.org/10.18419/darus-475
  57. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2019). FAIR and Open Computer Science Research Software. In arXiv preprint arXiv:1908.05986. http://dblp.uni-trier.de/db/journals/corr/corr1908.html#abs-1908-05986
  58. Hermann, S., Iglezakis, D., & Seeland, A. (2019). Requirements for Finding Research Data and Software. Pamm, 19, Article 1. https://doi.org/10.1002/pamm.201900480
  59. Hermann, S., Iglezakis, D., & Seeland, A. (2019). Requirements for Finding Research Data and Software. Pamm, 19, Article 1. https://doi.org/10.1002/pamm.201900480
  60. Hsu, L., Hutchison, V. B., & Langseth, M. L. (2019). Measuring sustainability of seed-funded earth science informatics projects. Plos One, 14, Article 10. https://doi.org/10.1371/journal.pone.0222807
  61. Johanson, A. N., & Hasselbring, W. (2019). Software Engineering for Computational Science. In S. Becker, I. Bogicevic, G. Herzwurm, & S. Wagner (Eds.), SE/SWM: Vol. P-292 (pp. 43–44). GI. http://dblp.uni-trier.de/db/conf/se/se2019.html#JohansonH19
  62. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1–23. https://doi.org/10.3233/ds-190026
  63. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Pico, E. M. D., Angel, V. D. D., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Hong, N. C., Goble, C., & Capella-Gutierrez, S. (2019). Towards FAIR principles for~research~software. Data Science, 1–23. https://doi.org/10.3233/ds-190026
  64. Li, K., Chen, P.-Y., & Yan, E. (2019). Challenges of measuring software impact through citations: An examination of the lme4 R package. Journal of Informetrics, 13, Article 1. https://doi.org/10.1016/j.joi.2019.02.007
  65. Scheliga, K., Pampel, H., Konrad, U., Fritzsch, B., Schlauch, T., Nolden, M., Zu Castell, W., Finke, A., Hammitzsch, M., Bertuch, O., & Denker, M. (2019). Dealing with research software: Recommendations for best practices. https://doi.org/10.2312/OS.HELMHOLTZ.003
  66. Siepel, A. (2019). Challenges in funding and developing genomic software: roots and remedies. Genome Biology, 20, Article 1. https://doi.org/10.1186/s13059-019-1763-7
  67. Task Group Forschungssoftware Des Arbeitskreises Open Science Der Helmholtz-Gemeinschaft. (2019). Muster-Richtlinie Nachhaltige Forschungssoftware an den Helmholtz-Zentren. https://doi.org/10.2312/OS.HELMHOLTZ.007
  68. van de Sandt, S., Nielsen, L. H., Ioannidis, A., Muench, A., Henneken, E. A., Accomazzi, A., Bigarella, C., Lopez, J. B. G., & Dallmeier-Tiessen, S. (2019). Practice meets Principle: Tracking Software and Data Citations to Zenodo DOIs. CoRR, abs/1911.00295. http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-00295
  69. VSNU, NFU, KNAW, NWO and ZonMw. (2019). Room for everyone’s talent.
  70. AlNoamany, Y., & Borghi, J. A. (2018). Towards computational reproducibility: researcher perspectives on the use and sharing of software. PeerJ Computer Science, 4, e163. https://doi.org/10.7717/peerj-cs.163
  71. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit and Preservation Policy and Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  72. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  73. Cruz, M. J., Kurapati, S., & Turkyilmaz-van der Velden, Y. (2018). The Role of Data Stewardship in Software Sustainability and Reproducibility. 2018 IEEE 14th International Conference on E-Science (E-Science), 1–8. https://doi.org/10.1109/eScience.2018.00009
  74. Gundersen, O. E., & Kjensmo, S. (2018). State of the Art: Reproducibility in Artificial Intelligence. In S. McIlraith & K. Weinberger (Eds.), Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18). Association for the Advancement of Artificial Intelligence.
  75. Gärtner, M., Hahn, U., & Hermann, S. (2018). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age: 27th International Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings (pp. 284–291). Springer International Publishing. https://doi.org/10.1007/978-3-319-73706-5_24
  76. Gärtner, M., Hahn, U., & Hermann, S. (2018). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age (pp. 284–291). Springer International Publishing.
  77. Gärtner, M., Hahn, U., & Hermann, S. (2018). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age (pp. 284–291). Springer International Publishing.
  78. Gärtner, M., Hahn, U., & Hermann, S. (2018). Supporting Sustainable Process Documentation. In G. Rehm & T. Declerck (Eds.), Language Technologies for the Challenges of the Digital Age: 27th International Conference, GSCL 2017, Berlin, Germany, September 13-14, 2017, Proceedings (pp. 284–291). Springer International Publishing. https://doi.org/10.1007/978-3-319-73706-5_24
  79. Hallé, S., Khoury, R., & Awesso, M. (2018). Streamlining the Inclusion of Computer Experiments In a Research Paper. IEEE Computer, 51, Article 11. http://dblp.uni-trier.de/db/journals/computer/computer51.html#HalleKA18
  80. Hermann, S., Hahn, U., Gärtner, M., & Fritze, F. (2018). Nachträglich ist nicht gleich nachnutzbar: Ansätze für integrierte Prozessdokumentation im Forschungsalltag. O-Bib. Das Offene Bibliotheksjournal, 5, Article 3. https://doi.org/10.5282/O-BIB/2018H3S32-45
  81. Hermann, S., Hahn, U., Gärtner, M., & Fritze, F. (2018). Nachträglich ist nicht gleich nachnutzbar: Ansätze für integrierte Prozessdokumentation im Forschungsalltag. O-Bib. Das Offene Bibliotheksjournal, 5, Article 3. https://doi.org/10.5282/O-BIB/2018H3S32-45
  82. Hermann, S., Hahn, U., Gärtner, M., & Fritze, F. (2018). Nachträglich ist nicht gleich nachnutzbar: Ansätze für integrierte Prozessdokumentation im Forschungsalltag: 32-45 Seiten / o-bib. Das offene Bibliotheksjournal / herausgegeben vom VDB, Bd. 5 Nr. 3 (2018). https://doi.org/10.5282/O-BIB/2018H3S32-45
  83. Hinsen, K. (2018). Verifiability in computer-aided research: the role of digital scientific notations at the human-computer interface. PeerJ Computer Science, 4, e158. https://doi.org/10.7717/peerj-cs.158
  84. Johanson, A., & Hasselbring, W. (2018). Software Engineering for Computational Science: Past, Present, Future. Computing in Science Engineering, 20, Article 2. https://doi.org/10.1109/MCSE.2018.021651343
  85. Karimzadeh, M., & Hoffman, M. M. (2018). Top considerations for creating bioinformatics software documentation. BRIEFINGS IN BIOINFORMATICS, 19, Article 4. https://doi.org/10.1093/bib/bbw134
  86. Katerbow, M., & Feulner, G. (2018). Handreichung zum Umgang mit Forschungssoftware. Zenodo. https://doi.org/10.5281/ZENODO.1172970
  87. Katerbow, M., & Feulner, G. (2018). Handreichung Zum Umgang Mit Forschungssoftware. Zenodo. https://doi.org/10.5281/zenodo.1172970
  88. Katz, D. S., & Hong, N. P. C. (2018). Software Citation in Theory and Practice. In J. H. Davenport, M. Kauers, G. Labahn, & J. Urban (Eds.), ICMS (Vol. 10931, pp. 289–296). Springer. http://dblp.uni-trier.de/db/conf/icms/icms2018.html#KatzH18
  89. Kuzak, M., Harrow, J., Jimenez, R. C., Martinez, P. A., Psomopoulos, F. E., Svobodová Vařeková, R., & Via, A. (2018). Lesson Development for Open Source Software Best Practices Adoption. 2018 IEEE 14th International Conference on E-Science (E-Science), 19–20. https://doi.org/10.1109/eScience.2018.00011
  90. Lee, B. D. (2018). Ten simple rules for documenting scientific software. PLOS Computational Biology, 14, Article 12. https://doi.org/10.1371/journal.pcbi.1006561
  91. no author. (2018, February 15). Choose an open source license | Choose a License. https://choosealicense.com/
  92. Russell, P. H., Johnson, R. L., Ananthan, S., Harnke, B., & Carlson, N. E. (2018). A large-scale analysis of bioinformatics code on GitHub. Plos One, 13, Article 10. https://doi.org/10.1371/journal.pone.0205898
  93. Rüde, U., Willcox, K., McInnes, L. C., & Sterck, H. D. (2018). Research and Education in Computational Science and Engineering. SIAM Review, 60, Article 3. http://dblp.uni-trier.de/db/journals/siamrev/siamrev60.html#RudeWMS18
  94. Schlauch, T., Meinel, M., & Haupt, C. (2018). DLR Software Engineering Guidelines. https://doi.org/10.5281/zenodo.1344612
  95. Allen, A., Aragon, C. R., Becker, C., Carver, J., Chis, A., Combemale, B., Croucher, M., Crowston, K., Garijo, D., Gehani, A., Goble, C. A., Haines, R., Hirschfeld, R., Howison, J., Huff, K. D., Jay, C., Katz, D. S., Kirchner, C., Kuksenok, K., et al. (2017). Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). Dagstuhl Manifestos, 6, Article 1. http://dblp.uni-trier.de/db/journals/dagstuhl-manifestos/dagstuhl-manifestos6.html#AllenABCCCCCGGG17
  96. Atkinson, M., Gesing, S., Montagnat, J., & Taylor, I. (2017). Scientific workflows: Past, present and future. Future Generation Computer Systems, 75, 216–227. https://doi.org/10.1016/j.future.2017.05.041
  97. Bar-Sinai, M., & Dunlap, M. (2017). The Open Monolith - Keeping Your Codebase (and Your Headaches) Small.
  98. Bieliauskas, S., & Schreiber, A. (2017, April). DLR-SC/prov-comics: QS PROV Comics Prototype - Big fixes [Zenodo]. https://doi.org/10.5281/zenodo.555927
  99. Boettiger, C. (2017). Generating CodeMeta Metadata for R Packages. The Journal of Open Source Software, 2, Article 19. https://doi.org/10.21105/joss.00454
  100. Childers, B. R., & Chrysanthis, P. K. (2017). Artifact Evaluation: Is It a Real Incentive? 2017 IEEE 13th International Conference on E-Science (E-Science), 488–489. https://doi.org/10.1109/eScience.2017.79

Befragungen

  1. Cox, A. M., Kennan, M. A., Lyon, L., & Pinfield, S. (2017). Developments in research data management in academic libraries: Towards an understanding of research data service maturity. Journal of the Association for Information Science and Technology, 68, Article 9. https://doi.org/10.1002/asi.23781
  2. Donaldson, D. R., Martin, S., & Proffen, T. (2017). Understanding Perspectives on Sharing Neutron Data at Oak Ridge National Laboratory. Data Science Journal, 16, 35. https://doi.org/10.5334/dsj-2017-035
  3. Einbock, J. (2017). Informationsbeschaffungs- und Publikationsverhalten von Wissenschaftlerinnen und Wissenschaftlern der natur- und ingenieurwissenschaftlichen Fächer.
  4. Joo, Y. K., & Kim, Y. (2017). Engineering researchers’ data reuse behaviours: a structural equation modelling approach. The Electronic Library, 35, Article 6. https://doi.org/10.1108/EL-08-2016-0163
  5. Feldsien-Sudhaus, I., & Rajski, B. (2016). Digitale Forschungsdaten für die Zukunft sichern: Umfrage zum Umgang mit Forschungsdaten an der TU Hamburg: Auswertung. https://tubdok.tub.tuhh.de/handle/11420/1329
  6. Hauck, Dr. R., Kaps, R., Krojanski, H. G., Meyer, A., Neumann, J., & Soßna, V. (2016). Der Umgang mit Forschungsdaten an der Leibniz Universität Hannover. Auswertung einer Umfrage und ergänzender Interviews 2015/16 (p. –). Leibniz Universität Hannover. https://doi.org/10.15488/265
  7. Van den Eynden, V., Knight, G., Vlad, A., Radler, B., Tenopir, C., Leon, D., Manista, F., Whitworth, J., & Corti, L. (2016). Survey of Wellcome researchers and their attitudes to open research (figshare, Ed.). https://doi.org/10.6084/m9.figshare.4055448.v1
  8. Bauer, B., Ferus, A., Gorraiz, J., Gründhammer, V., Gumpenberger, C., Maly, N., Mühlegger, J. M., Preza, J. L., Sánchez Solís, B., Schmidt, N., & Steineder, C. (2015). Forschende und ihre Daten: Ergebnisse einer österreichweiten Befragung. Report 2015 – Executive Summary und Empfehlungen.
  9. Swauger, S., & Vision, T. J. (2015). What Factors Influence Where Researchers Deposit their Data? A Survey of Researchers Submitting to Data Repositories. (No. 1). 10, Article 1. https://doi.org/10.2218/ijdc.v10i1.289
  10. Tenopir, C., Dalton, E. D., Allard, S., Frame, M., Pjesivac, I., Birch, B., Pollock, D., & Dorsett, K. (2015). Changes in Data Sharing and Data Reuse Practices and Perceptions among Scientists Worldwide. Plos One, 10, Article 8. https://doi.org/10.1371/journal.pone.0134826
  11. Tristram, F., & Streit, A. (2015). Daten zu bwFDM-Communities. http://bwfdm.scc.kit.edu/cgi-bin/daten/
  12. Tristram, F., & Streit, A. (2015). Öffentlicher Abschlussbericht von bwFDM-Communities. Karlsruher Institut für Technologie.
  13. Stodden, V. (2010). The Scientific Method in Practice: Reproducibility in the Computational Sciences (M. S. R. P. No. 4773-10, Ed.; No. MIT Sloan Research Paper No. 4773-10). https://doi.org/10.2139/ssrn.1550193

Best Practices

  1. Garbuglia, F., Saenen, B., Gaillard, V., & Engelhardt, C. (2021). D7.5 Good Practices in FAIR Competence Education. Zenodo. https://doi.org/10.5281/zenodo.5785253
  2. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  3. Ostendorff, P., & Linke, D. (2019). Best-Practices im Umgang mit rechtlichen Fragestellungen zum Forschungsdatenmanagement (FDM). Bibliotheksdienst, 53, Article 10–11. https://doi.org/10.1515/bd-2019-0098
  4. Austin, C. C., Bloom, T., Dallmeier-Tiessen, S., Khodiyar, V. K., Murphy, F., Nurnberger, A., Raymond, L., Stockhause, M., Tedds, J., Vardigan, M., & Whyte, A. (2017). Key components of data publishing: using current best practices to develop a reference model for data publishing. International Journal on Digital Libraries, 18, Article 2. https://doi.org/10.1007/s00799-016-0178-2
  5. Fehr, J., and Jan Heiland, Himpe, C., & Saak, J. (2016). Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software. AIMS Mathematics, 1, Article 3. https://doi.org/10.3934/math.2016.3.261

Beschreibung von Forschungsdaten

  1. Schembera, B., & Iglezakis, D. (n.d.). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In Metadata and Semantic Research. 12th International Conference, MTSR 2018, Limassol, Cyprus, 23-26 October 2018, Proceedings. Springer.
  2. Baum, R. (2025). Einführung in Terminologien und Terminologiedienste. Zenodo. https://doi.org/10.5281/zenodo.14938279
  3. Bayerlein, B., Schilling, M., Birkholz, H., Jung, M., Waitelonis, J., Mädler, L., & Sack, H. (2024). PMD Core Ontology: Achieving semantic interoperability in materials science. Materials & Design, 237, 112603. https://doi.org/10.1016/j.matdes.2023.112603
  4. Bayerlein, B., Schilling, M., Birkholz, H., Jung, M., Waitelonis, J., Mädler, L., & Sack, H. (2024). PMD Core Ontology: Achieving semantic interoperability in materials science. Materials & Design, 237, 112603. https://doi.org/10.1016/j.matdes.2023.112603
  5. Castro, L. J., Ferenz, S., Hajiabadi, H., Kuckertz, P., Löbe, M., Schmidt, C., Struck, A., & Thiery, F. (2024). Results on a Survey on Research Software Metadata in the NFDI Consortia. Zenodo. https://doi.org/10.5281/zenodo.12704414
  6. David, M., Colom, M., Garijo, D., Castro, L. J., Louvet, V., Ronchieri, E., Torquati, M., del Caño, L., Cerlane, L., Van den Bossche, M., Campos, I., & Di Cosmo, R. (2024). Ensure Software Quality. Zenodo. https://doi.org/10.5281/zenodo.10723608
  7. David, M., Colom, M., Garijo, D., Castro, L. J., Louvet, V., Ronchieri, E., Torquati, M., del Caño, L., Cerlane, L., Van den Bossche, M., Campos, I., & Di Cosmo, R. (2024). Ensure Software Quality. Zenodo. https://doi.org/10.5281/zenodo.10723608
  8. Gregory, A., Bell, D., Brickley, D., Buttigieg, P. L., Cox, S., Edwards, M., Doug, F., Gonzalez Morales, L. G., Heus, P., Hodson, S., Kanjala, C., Le Franc, Y., Maxwell, L., Molloy, L., Richard, S., Rizzolo, F., Winstanley, P., Wyborn, L., & Burton, A. (2024). WorldFAIR (D2.3) Cross-Domain Interoperability Framework (CDIF) (Report Synthesising Recommendations for Disciplines and Cross-Disciplinary Research Areas). https://doi.org/10.5281/ZENODO.11236871
  9. Karras, O., Budde, L., Merkel, P., Hermsdorf, J., Stonis, M., Overmeyer, L., Behrens, B.-A., & Auer, S. (2024). Organizing Scientific Knowledge from Engineering Sciences Using the Open Research Knowledge Graph: The Tailored Forming Process Chain Use Case. Data Science Journal, 23. https://doi.org/10.5334/dsj-2024-052
  10. Lin, K., Alrashed, T., & Noy, N. (2024). Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web. https://arxiv.org/abs/2408.14636
  11. Lin, K., Alrashed, T., & Noy, N. (2024). Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web. https://arxiv.org/abs/2408.14636
  12. Masmoudi, M., Ben Abdallah Ben Lamine, S., Karray, M. H., Archimede, B., & Baazaoui Zghal, H. (2024). Semantic Data Integration and Querying: A Survey and Challenges. ACM Comput. Surv., 56, Article 8. https://doi.org/10.1145/3653317
  13. Behr, A. S., Völkenrath, M., & Kockmann, N. (2023). Ontology Extension with NLP-based Concept Extraction for Domain Experts in Catalytic Sciences. https://doi.org/10.21203/rs.3.rs-2457909/v1
  14. Buys, M. (2023). DataCite Looking Ahead – Global Data Citation Corpus for All Data Citations [Zenodo]. https://doi.org/10.5281/ZENODO.7634709
  15. Buys, M. (2023). DataCite Looking Ahead – Global Data Citation Corpus for All Data Citations [Zenodo]. https://doi.org/10.5281/ZENODO.7634709
  16. Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.-L., & Rumpe, B. (2023). Toward Research Software Engineering Research. Zenodo. https://doi.org/10.5281/ZENODO.8020525
  17. Groth, P., Simperl, E., van Erp, M., & Vrandečić, D. (2023). Knowledge Graphs and their Role in the Knowledge Engineering of the 21st Century (Dagstuhl Seminar 22372). https://doi.org/10.4230/DAGREP.12.9.60
  18. Gruenpeter, M., Granger, S., Monteil, A., Chue Hong, N., Breitmoser, E., Antonioletti, M., Garijo, D., González Guardia, E., Gonzalez Beltran, A., Goble, C., Soiland-Reyes, S., Juty, N., & Mejias, G. (2023). D4.4 - Guidelines for recommended metadata standard for research software within EOSC. Zenodo. https://doi.org/10.5281/zenodo.8097537
  19. Gruenpeter, M., Granger, S., Monteil, A., Chue Hong, N., Breitmoser, E., Antonioletti, M., Garijo, D., González Guardia, E., Gonzalez Beltran, A., Goble, C., Soiland-Reyes, S., Juty, N., & Mejias, G. (2023). D4.4 - Guidelines for recommended metadata standard for research software within EOSC. Zenodo. https://doi.org/10.5281/zenodo.8097537
  20. Gruenpeter, M., Granger, S., Monteil, A., Chue Hong, N., Breitmoser, E., Antonioletti, M., Garijo, D., González Guardia, E., Gonzalez Beltran, A., Goble, C., Soiland-Reyes, S., Juty, N., & Mejias, G. (2023). D4.4 - Guidelines for recommended metadata standard for research software within EOSC. Zenodo. https://doi.org/10.5281/zenodo.8097537
  21. Lauterbach, S., Dienhart, H., Range, J., Malzacher, S., Spöring, J.-D., Rother, D., Pinto, M. F., Martins, P., Lagerman, C. E., Bommarius, A. S., Høst, A. V., Woodley, J. M., Ngubane, S., Kudanga, T., Bergmann, F. T., Rohwer, J. M., Iglezakis, D., Weidemann, A., Wittig, U., et al. (2023). EnzymeML: seamless data flow and modeling of enzymatic data. Nature Methods. https://doi.org/10.1038/s41592-022-01763-1
  22. Lauterbach, S., Dienhart, H., Range, J., Malzacher, S., Spöring, J.-D., Rother, D., Pinto, M. F., Martins, P., Lagerman, C. E., Bommarius, A. S., Høst, A. V., Woodley, J. M., Ngubane, S., Kudanga, T., Bergmann, F. T., Rohwer, J. M., Iglezakis, D., Weidemann, A., Wittig, U., et al. (2023). EnzymeML: seamless data flow and modeling of enzymatic data. Nature Methods. https://doi.org/10.1038/s41592-022-01763-1
  23. Quarati, A. (2023). Open Government Data: Usage trends and metadata quality. Journal of Information Science, 49, Article 4. https://doi.org/10.1177/01655515211027775
  24. Stathis, K., Ross, C., Dreyer, B., & Vierkant, P. (2023). DataCite Metadata Schema 4.4 to Schema.org Mapping (DataCite, Ed.). Zenodo. https://doi.org/10.5281/zenodo.7661399
  25. Wu, M., Richard, S. M., Verhey, C., Castro, L. J., Cecconi, B., & Juty, N. (2023). An Analysis of Crosswalks from Research Data Schemas to Schema.org. Data Intelligence, 5, Article 1. https://doi.org/10.1162/dint_a_00186
  26. Wu, M., Richard, S. M., Verhey, C., Castro, L. J., Cecconi, B., & Juty, N. (2023). An Analysis of Crosswalks from Research Data Schemas to Schema.org. Data Intelligence, 5, Article 1. https://doi.org/10.1162/dint_a_00186
  27. Arndt, S., Farnbacher, B., Fuhrmans, M., Hachinger, S., Hickmann, J., Hoppe, N., Horsch, M. T., Iglezakis, D., Karmacharya, A., Lanza, G., Leimer, S., Munke, J., Terzijska, D., Theissen-Lipp, J., Wiljes, C., & Windeck, J. (2022). Metadata4Ing: An ontology for describing the generation of research data within a scientific activity. (Zenodo, Ed.). Zenodo. https://doi.org/10.5281/zenodo.5957104
  28. Doorn, P., Steinhoff, W., Verburg, M., Grootveld, M., & Dillo, I. (2022). F-UJI and FAIR Enough tool comparison dataset (European Research Data Landscape study) [Zenodo]. https://doi.org/10.5281/ZENODO.7371409
  29. Druskat, S., Bertuch, O., Juckeland, G., Knodel, O., & Schlauch, T. (2022). Software publications with rich metadata: state of the art, automated workflows and HERMES concept.
  30. Druskat, S., Bertuch, O., Juckeland, G., Knodel, O., & Schlauch, T. (2022). Software publications with rich metadata: state of the art, automated workflows and HERMES concept.
  31. Hirsch, M., Iglezakis, D., Leymann, F., & Zimmermann, M. (2022). The ReSUS Project - Infrastructure for Sharing Research Software. In E-Science-Tage 2021: Share Your Research Data (pp. 267–276). heiBOOKS. https://doi.org/10.11588/HEIBOOKS.979.C13737
  32. Quarati, A., & Raffaghelli, J. E. (2022). Do researchers use open research data? Exploring the relationships between usage trends and metadata quality across scientific disciplines from the Figshare case. Journal of Information Science, 48, Article 4. https://doi.org/10.1177/0165551520961048
  33. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., et al. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action. F1000Research, 9, 295. https://doi.org/10.12688/f1000research.23224.2
  34. de Vries, J., Tykhonov, V., Scharnhorst, A., Indarto, E., & Admiraal, F. (2021). Flexible metadata schemes for research data repositories - The Common Framework in Dataverse and the CMDI use case. In M. Monachini & M. Eskevich (Eds.), Proceedings of the CLARIN Annual Conference 2021 (pp. 109–118).
  35. Horsch, M. T., Morgado, J. F., Goldbeck, G., Iglezakis, D., Konchakova, N. A., & Schembera, B. (2021). Domain-specific metadata standardization in materials modelling. Domain Ontologies for Research Data Management in Industry Commons of Materials and Manufacturing. https://openreview.net/forum?id=uYgdGd7_wgH
  36. Iglezakis, D., Fuhrmans, M., Arndt, S., Demandt, É., Hachinger, S., Hausen, D., Lanza, G., Lipp, J., Stotzka, R., & Terzijska, D. (2021). Interoperabilität von Metadaten innerhalb der NFDI: Konsortienübergreifender Metadaten-Workshop am 2./3. Juli 2020. Bausteine Forschungsdatenmanagement, Article 2. https://doi.org/10.17192/bfdm.2021.2.8313
  37. Iglezakis, D., Fuhrmans, M., Arndt, S., Demandt, É., Hachinger, S., Hausen, D., Lanza, G., Lipp, J., Stotzka, R., & Terzijska, D. (2021). Interoperabilität von Metadaten innerhalb der NFDI: Konsortienübergreifender Metadaten-Workshop am 2./3. Juli 2020. Bausteine Forschungsdatenmanagement, Article 2. https://doi.org/10.17192/bfdm.2021.2.8313
  38. Löffler, F., Wesp, V., König-Ries, B., & Klan, F. (2021). Dataset search in biodiversity research: Do metadata in data repositories reflect scholarly information needs? Plos One, 16, Article 3. https://doi.org/10.1371/journal.pone.0246099
  39. Schembera, B. (2021). Like a rainbow in the dark: metadata annotation for HPC applications in the age of dark data. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03602-6
  40. Wu, M., Juty, N., Research Metadata Schemas WG, R., Collins, J., Duerr, R., Ridsdale, C., Shepherd, A., Verhey, C., & Jael Castro, L. (2021). Guidelines for publishing structured metadata on the web (R. D. Alliance, Ed.). https://www.rd-alliance.org/system/files/documents/Guidelines%20for%20publishing%20structured%20data_V3.0_20210615.pdf
  41. Biernacka, K. (2020). LEGO® Metadaten für die Reproduzierbarkeit. Zenodo. https://doi.org/10.5281/ZENODO.3733164
  42. Heinrichs, B., & Politze, M. (2020). Moving towards a General Metadata Extraction Solution for Research Data with State-of-the-Art Methods. Kdir, 227–234.
  43. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, Article 1. https://doi.org/10.17192/bfdm.2020.1.8085
  44. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, Article 1. https://doi.org/10.17192/bfdm.2020.1.8085
  45. Hub, T. C. I. (2020). A survey of Top-Level Ontologies.
  46. Hugo, W., Le Franc, Y., Coen, G., Parland-von Essen, J., & Bonino, L. (2020). D2.5 FAIR Semantics Recommendations Second Iteration. https://doi.org/10.5281/ZENODO.4314321
  47. Kesper, A., Wenz, V., & Taentzer, G. (2020). Detecting Quality Problems in Research Data: A Model-Driven Approach. http://arxiv.org/abs/2007.11298
  48. Schembera, B., & Iglezakis, D. (2020). EngMeta - Metadata for Computational Engineering. International Journal of Metadata, Semantics and Ontologies, 14, Article 1. https://doi.org/10.1504/IJMSO.2020.107792
  49. Selent, B., Kraus, H., Hansen, N., Schembera, B., Seeland, A., & Iglezakis, D. (2020). Management of Research Data in Computational Fluid Dynamics and Thermodynamics. In V. Heuveline, F. Gebhart, & N. Mohammadianbisheh (Eds.), E-Science-Tage 2019: Data to Knowledge (pp. 128–139). HeiBOOKS. https://doi.org/10.11588/heibooks.598
  50. Grunzke, R., Hartmann, V., Jejkal, T., Kollai, H., Prabhune, A., Herold, H., Deicke, A., Dressler, C., Dolhoff, J., Stanek, J., Hoffmann, A., Müller-Pfefferkorn, R., Schrade, T., Meinel, G., Herres-Pawlis, S., & Nagel, W. E. (2019). The MASi repository service — Comprehensive, metadata-driven and multi-community research data management. Future Generation Computer Systems, 94, 879–894. https://doi.org/10.1016/j.future.2017.12.023
  51. Horsch, M. T., Niethammer, C., Boccardo, G., Carbone, P., Chiacchiera, S., Chiricotto, M., Elliott, J. D., Lobaskin, V., Neumann, P., Schiffels, P., Seaton, M. A., Todorov, I. T., Vrabec, J., & Cavalcanti, W. L. (2019). Semantic Interoperability and Characterization of Data Provenance in Computational Molecular Engineering. Journal of Chemical & Engineering Data, 65, Article 3. https://doi.org/10.1021/acs.jced.9b00739
  52. Iglezakis, D., & Schembera, B. (2019). EngMeta - a Metadata Scheme for the Engineering Sciences [DaRUS]. https://doi.org/10.18419/darus-500
  53. Iglezakis, D. (2019). Relevance of Different Metadata Fields for the Description of Research Data from the Engineering Sciences. https://doi.org/10.18419/darus-501
  54. Kümmet, S., Lücke, S., Schulz, J., Spenger, M., & Weber, T. (2019). DataCite Best Practice Guide. Zenodo. https://doi.org/10.5281/zenodo.3559799
  55. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Eds.), Metadata and Semantic Research (No. 846; pp. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  56. Schembera, B., & Iglezakis, D. (2019). The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering. In E. Garoufallou, F. Sartori, R. Siatri, & M. Zervas (Eds.), Metadata and Semantic Research (No. 846; pp. 127–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-14401-2_12
  57. Selent, B., Schembera, B., Iglezakis, D., & Seeland, A. (2019). Datenmanagement in Infrastrukturen, Prozessen und Lebenszyklen für die Ingenieurwissenschaften : Abschlussbericht des BMBF-Projektes Dipl-Ing. Universität Stuttgart; https://doi.org/10.2314/KXP:1693393980
  58. Sprenger, J., Zehl, L., Pick, J., Sonntag, M., Grewe, J., Wachtler, T., Grün, S., & Denker, M. (2019). odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments. Ludwig-Maximilians-Universität München. https://epub.ub.uni-muenchen.de/69215/
  59. Balatsoukas, P., Rousidis, D., & Garoufallou, E. (2018). A method for examining metadata quality in open research datasets using the OAI-PMH and SQL queries: the case of the Dublin Core ‘Subject’ element and suggestions for user-centred metadata annotation design. Ijmso, 13, Article 1. http://dblp.uni-trier.de/db/journals/ijmso/ijmso13.html#BalatsoukasRG18
  60. Brown, C., Hong, N. C., & Jackson, M. (2018). Software Deposit And Preservation Policy And Planning Workshop Report. https://doi.org/10.5281/zenodo.1250310
  61. Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12, Article 2. https://doi.org/10.2218/ijdc.v12i2.577
  62. Gärtner, M., Hahn, U., & Hermann, S. (2018). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. 563–570). European Language Resources Association (ELRA).
  63. Gärtner, M., Hahn, U., & Hermann, S. (2018). Preserving Workflow Reproducibility: The RePlay-DH Client as a Tool for Process Documentation. In N. C. (. chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA).
  64. Bieliauskas, S., & Schreiber, A. (2017, April). DLR-SC/prov-comics: QS PROV Comics Prototype - Big fixes [Zenodo]. https://doi.org/10.5281/zenodo.555927
  65. Group, D. M. W. (2017). DataCite Metadata Schema for the Publication and Citation of Research Data. Version 4.1. https://doi.org/10.5438/0015
  66. Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., & others, . (2017). Ground: A Data Context Service. Cidr.
  67. Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., Gil, Y. G., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., & Goble, C. (2017). CodeMeta: an exchange schema for software metadata. Version 2.0. https://doi.org/10.5063/schema/codemeta-2.0
  68. Schembera, B., & Bönisch, T. (2017). Challenges of Research Data Management for High Performance Computing. International Conference on Theory and Practice of Digital Libraries, 140–151. https://link.springer.com/chapter/10.1007/978-3-319-67008-9_12
  69. Schreiber, A., & Struminski, R. (2017). Tracing personal data using comics. Universal Access in Human--Computer Interaction. Design and Development Approaches and Methods: 11th International Conference, UAHCI 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9--14, 2017, Proceedings, Part I 11, 444–455.
  70. Stein, A., Applegate, K. J., & Robbins, S. (2017). Achieving and Maintaining Metadata Quality: Toward a Sustainable Workflow for the IDEALS Institutional Repository. Cataloging & Classification Quarterly, 55, Article 7–8. https://doi.org/10.1080/01639374.2017.1358786
  71. Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino da Silva Santos, L. O., & Dumontier, M. (2017). A design framework and exemplar metrics for FAIRness. bioRxiv. https://doi.org/10.1101/225490
  72. Kohwalter, T., Oliveira, T., Freire, J., Clua, E., & Murta, L. (2016). Prov Viewer: A Graph-Based Visualization Tool for Interactive Exploration of Provenance Data. In M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 71–82). Springer International Publishing.
  73. Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated Quality Assessment of Metadata across Open Data Portals. J. Data and Information Quality, 8, Article 1. https://doi.org/10.1145/2964909
  74. Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated quality assessment of metadata across open data portals. Journal of Data and Information Quality (JDIQ), 8, Article 1.
  75. Pimentel, J. F., Freire, J., Braganholo, V., & Murta, L. (2016). Tracking and Analyzing the Evolution of Provenance from Scripts. In M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 16–28). Springer International Publishing.
  76. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/10.1016/j.commatsci.2015.09.013
  77. Schreiber, A. (2016). Standardisierung eines erweiterbaren Modells für Provenance-Daten (PROV-SPEC) (Nos. 2016–04). Article 2016–04.
  78. Wu, K., Coviello, E. N., Flanagan, S. M., Greenwald, M., Lee, X., Romosan, A., Schissel, D. P., Shoshani, A., Stillerman, J., & Wright, J. (2016). MPO: A System to Document and Analyze Distributed Heterogeneous Workflows. In M. Mattoso & B. Glavic (Eds.), Provenance and Annotation of Data and Processes (pp. 166–170). Springer International Publishing.
  79. Belhajjame, K., Zhao, J., Garijo, D., Gable, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the World Wide Web, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  80. Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
  81. Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14, Article 0. https://doi.org/10.5334/dsj-2015-002
  82. Chao, T. (2015). Mapping Methods Metadata for Research Data. International Journal of Digital Curation, 10, Article 1. https://doi.org/10.2218/ijdc.v10i1.347
  83. Moreau, L., Groth, P., Cheney, J., Lebo, T., & Miles, S. (2015). The rationale of PROV. Web Semantics: Science, Services and Agents on the World Wide Web, 35, Article 4. https://doi.org/10.1016/j.websem.2015.04.001
  84. Rasaiah, B. A., Jones, S. D., Bellman, C., Malthus, T. J., & Hueni, A. (2015). Assessing Field Spectroscopy Metadata Quality. Remote Sensing, 7, Article 4. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahJBMH15
  85. Rasaiah, B. A., Bellman, C., Jones, S. D., Malthus, T. J., & Roelfsema, C. M. (2015). Towards an Interoperable Field Spectroscopy Metadata Standard with Extended Support for Marine Specific Applications. Remote Sensing, 7, Article 11. http://dblp.uni-trier.de/db/journals/remotesensing/remotesensing7.html#RasaiahBJMR15
  86. Starr, J., Castro, E., Crosas, M., Dumontier, M., Downs, R. R., Duerr, R., Haak, L. L., Haendel, M., Herman, I., Hodson, S., Hourclé, J., Kratz, J. E., Lin, J., Nielsen, L. H., Nurnberger, A., Proell, S., Rauber, A., Sacchi, S., Smith, A., et al. (2015). Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.1
  87. Amorim, R., Aguiar Castro, J., Rocha, J., & Ribeiro, C. (2014). LabTablet: Semantic Metadata Collection on a Multi-domain Laboratory Notebook. Communications in Computer and Information Science, 478, 193–205. https://doi.org/10.1007/978-3-319-13674-5_19
  88. Brauer, P., Czerniak, A., & Hasselbring, W. (2014). Start Smart and Finish Wise: The Kiel Marine Science Provenance-Aware Data Management Approach. In A. Chapman, B. Ludäscher, & A. Schreiber (Eds.), TAPP. USENIX Association. http://dblp.uni-trier.de/db/conf/tapp/tapp2014.html#BrauerCH14
  89. Farnel, S., & Shiri, A. (2014). Metadata for Research Data: Current Practices and Trends. In W. E. Moen & A. Rushing (Eds.), Dublin Core Conference (pp. 74–82). Dublin Core Metadata Initiative. http://dblp.uni-trier.de/db/conf/dc/dc2014.html#FarnelS14
  90. Grunzke, R., Hesser, J., Starek, J., Kepper, N., Gesing, S., Hardt, M., Hartmann, V., Kindermann, S., Potthoff, J., Hausmann, M., Müller-Pfefferkorn, R., & Jäkel, R. (2014). Device-Driven Metadata Management Solutions for Scientific Big Data Use Cases. 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 317–321.
  91. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M., & Krüger, J. (2014). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26, Article 10. https://doi.org/10.1002/cpe.3116
  92. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W. E., Atkinson, M. P., & Krüger, J. (2014). Standards-based metadata management for molecular simulations. Concurrency and Computation: Practice and Experience, 26, Article 10. http://dblp.uni-trier.de/db/journals/concurrency/concurrency26.html#GrunzkeBGHKBGPSSSSSMJNA014
  93. Malik, T. (2014). Geobase: Indexing NetCDF Files for large-scale Data Analysis. In Big Data Management, Technologies, and Applications (pp. 295–313). IGI Global. https://doi.org/10.4018/978-1-4666-4699-5.ch012
  94. Rousidis, D., Sicilia, M.-Á., Garoufallou, E., & Balatsoukas, P. (2014). Data Quality Issues and Content Analysis for Research Data Repositories : The Case of Dryad. In P. Polydoratou & M. Dobreva (Eds.), ELPUB (pp. 49–58). IOS Press. http://dblp.uni-trier.de/db/conf/elpub/elpub2014.html#RousidisSGB14
  95. Rousidis, D., Garoufallou, E., Balatsoukas, P., & Sicilia, M.-Á. (2014). Metadata for Big Data: A preliminary investigation of metadata quality issues in research data repositories. Inf. Services and Use, 34, Article 3–4. http://dblp.uni-trier.de/db/journals/isu/isu34.html#RousidisGBS14
  96. Tran, H. D., Holt, J., Goodrich, R. W., Mader, J. A., Swain, M., Laity, A. C., Kong, M., Gelino, C. R., & Berriman, G. B. (2014). Metadata and Data Management for the Keck Observatory Archive. https://doi.org/10.1117/12.2054830
  97. Bechhofer, S., Buchan, I., de Roure, D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., & Goble, C. (2013). Why linked data is not enough for scientists. Future Generation Computer Systems, 29, Article 2. https://doi.org/10.1016/j.future.2011.08.004
  98. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., & Zhao, J. (2013). PROV-O: The PROV Ontology. https://www.w3.org/TR/prov-o/
  99. Reiche, K. J., & Höfig, E. (2013). Implementation of Metadata Quality Metrics and Application on Public Government Data. 2013 IEEE 37th Annual Computer Software and Applications Conference Workshops, 236–241. https://doi.org/10.1109/COMPSACW.2013.32
  100. Sahoo, S., Lebo, T., & McGuinness, D. (2013). PROV-O: The PROV Ontology [W3C Recommendation]. W3C.

Anforderungen der Forschungsförderer, politische Entwicklung

  1. für Bildung und Forschung (BMBF), B. (2016). Open Access in Deutschland. https://www.bmbf.de/pub/Open_Access_in_Deutschland.pdf

Contact

 

FoKUS - Competence Center for Research Data Management

To the top of the page